In this talk, we approach integration over general domains and surfaces in superspace by means of distribution theory. This definition is inspired by Hörmander’s formula, which is a simple layer integral that provides a distributional approach to classical real integration. We will define domains and surfaces in superspace in a purely analytical way by means of smooth even phase functions g. This allows to consider the Heaviside and Dirac distributions on such domains and surfaces respectively by means of their compositions with g expanded in a formal Taylor series. These compositions can be seen then as formal characteristic functions leading to simple definitions for the domain and surface integrals. This approach turns out to be well-defined and has some interesting applications. In particular, we will briefly show how to compute volumes and surface areas of some super-geometric bodies, i.e. a super-paraboloid and a super-hyperboloid. Moreover, some extensions of the Cauchy-Pompeiu formula for monogenic superfunctions and of the Bochner-Martinelli formula for holomorphic superfunctions will be presented. (Received July 25, 2018)