One of the most common condition used in the theory of equilibrium problems in linear spaces is the convexity/concavity of the equilibrium bifunction in question. When the underlying space is equipped with the geometry of nonpositive curvature, it turns out that the traditional convexity/concavity condition prevents the equilibrium problems to naturally generalize to variational inequalities. In this talk, we replace such convexity/concavity condition allows the equilibrium problems to generalize to variational inequalities and allows the use of the famous proximal methods. (Received August 04, 2020)