Amanda A. Schaeffer Fry, Stephen J Trefethen and C. Ryan Vinroot* (vinroot@math.wm.edu). Jordan decomposition map and Galois action for finite reductive groups in the disconnected center case. Preliminary report.

Let G be a connected reductive group over the algebraic closure of a finite field, F a Frobenius endomorphism of G, and let $G = G^F$ be the associated finite reductive group. In the case that the center of G is connected, Digne and Michel described a Jordan decomposition map for the complex characters of G which is unique with respect to a certain list of properties. We extend this result to the case that the center of G is not necessarily connected, but for the Lusztig series for semisimple classes (s), where s is in the dual group G^* such that the centralizer $C_{G^*}(s)$ is connected. We show that this Jordan decomposition map is well-behaved with respect to the action of the absolute Galois group acting on the complex irreducible characters. (Received August 10, 2020)