For a large open set of solutions to the positive energy Newtonian N-body problem the \(\binom{N}{2} \) mutual distances diverge linearly in both time directions. For these “hyperbolic solutions” we can set up a scattering map based on a compactification of phase space in the spirit of McGehee, or, alternatively, of Melrose, which gives the hyperbolic solutions a place to go. Those hyperbolic scattering solutions which never stray far from infinity will limit onto a non-deterministic “flow” at infinity described via a “point billiard system”. The talk’s goal is to state and sketch a proof of a shadowing lemma, in the spirit of Bolotin-MacKay, asserting that nearby to any such point billiard trajectory is a solution to the N-body equations. The talk is a synthesis of discussions and past works with involved Nathan Duignan, Jacques Fejoz, Andreas Knauf, Rafe Mazzeo, Rick Moeckel, and Guowei Yu. (Received July 09, 2020)