The well-known List Colouring Conjecture from the 1970s states that for every graph G the chromatic index of G is equal to its list chromatic index. In a seminal paper in 1996, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn’s theorem. More precisely, we show that, for a graph G with sufficiently large maximum degree Δ and minimum degree $\delta \geq \ln^{25} \Delta$, the following holds: For every assignment of lists of colours to the edges of G, such that $|L(e)| \geq (1 + o(1)) \cdot \max \{\deg(u), \deg(v)\}$ for each edge $e = uv$, there is an L-edge-colouring of G. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, k-uniform hypergraphs, and recently Molloy generalized this to correspondence colouring. We also prove a local version of Molloy’s result. In fact, we prove a weighted version that simultaneously implies all of our results. (Received August 31, 2020)