An \mathbb{R}-tree is a metric space such that between any two points there is a unique geodesic segment. An \mathbb{R}-tree is richly branching if the set of points with at least 3 branches of a non-trivial length is dense. We consider bounded, pointed \mathbb{R}-trees as metric structures in an appropriate continuous signature. The theory $\text{rb}R_{T,r}$ of “richly branching” pointed \mathbb{R}-trees with radius r is the model companion of the theory of \mathbb{R}-trees of radius at most r. We take a model M of $\text{rb}R_{T,r}$ and consider the space of points at distance r from the basepoint. We show that the theory of such spaces and the theory of richly branching \mathbb{R}-trees are bi-interpretable, and outline results about the topology of spaces of endpoints in \mathbb{R}-trees. This is joint work with C. Ward Henson. (Received February 03, 2020)