The conjecture on the realizability of rational exponents states that for every rational number r in $(1, 2)$ there is a graph F_r such that $ex(n, F_r) = \Theta(n^r)$. In their beautiful work, Bukh and Conlon resolved a weaker version of the conjecture, where F_r is allowed to be a finite family of graphs. Subsequent work has been focusing on narrowing this family down to a single graph. We formulate a framework, that is taking shape in recent work, to attack the conjecture on the realizability of rational exponents. As an application of the framework, we show that for every rational number $r \in (1, 2)$ of the form $2 - a/b$, where $a, b \in \mathbb{N}^+$ satisfy $[a/b]^3 \leq a \leq b/([b/a] + 1) + 1$, there exists a graph F_r such that the Turán number $ex(n, F_r) = \Theta(n^r)$. Joint work with Tao Jiang and Jie Ma. (Received August 02, 2020)