A (4,6)-fullerene graph G is a plane cubic graph whose faces are squares and hexagons. A resonant set of G is a set of pairwise disjoint faces of G such that the boundaries of such faces are M-alternating cycles for a perfect matching M of G. A resonant set of G is referred to as sextet pattern whenever it only includes hexagonal faces. We get the following conclusions. i) The Clar (resp. Fries) number of G is equal to its maximum forcing (resp. anti-forcing) number, which extends some known results for hexagonal systems with a perfect matching. Moreover, two formulas dependent only on the order of G are obtained, which count the Clar number and Fries number of G respectively. Hence we can compute the maximum forcing number of a (4,6)-fullerene graph in linear time. This answers an open problem proposed by Afshani et al. (2004) in the case of (4,6)-fullerene graphs. ii) All the maximum sextet patterns of G are characterized. Via such characterizations, a formula only depending on the order of G and the number of a fixed subgraph of G is obtained for counting the maximum sextet patterns of G, where the count equals the coefficient of the term with largest degree in its sextet polynomial. (Received August 03, 2020)