A central problem in Discrete Geometry, Hadwiger’s covering conjecture, asks to find the smallest integer $N(n)$ with the property that every convex body in \mathbb{R}^n can be covered by at most $N(n)$ translates of its interior.

We will discuss connections with Asymptotic Convex Geometry and measure concentration, as well as with entropic methods, that allow for at least a subexponential improvement to the long-standing general upper bounds of Rogers for $N(n)$. (Received August 16, 2020)