1 An Alternative Proof of Theorem 7.2

In this section we present an alternative proof of Theorem 7.2, taken from [1].
Theorem 1 (Theorem 7.2) Let $\Omega \subset \mathbb{R}$ be an open set. If $u: \Omega \rightarrow \mathbb{R}$ is integrable and belongs to $B P V(\Omega)$, then $u \in B V(\Omega)$ and

$$
|D u|(\Omega) \leq \operatorname{Var} u
$$

Conversely, if $u \in B V(\Omega)$, then u admits a right continuous representative \bar{u} in $B P V(\Omega)$ such that

$$
\operatorname{Var} \bar{u}=|D u|(\Omega) .
$$

Proof. Step 1: Let Ω be in interval and let $u: \Omega \rightarrow \mathbb{R}$ be an integrable function with finite pointwise variation. Let $\varphi \in C_{c}^{\infty}(\Omega)$ with $\|\varphi\|_{\infty} \leq 1$ and let $[a, b] \subset \Omega$ contain the support of φ. Since φ^{\prime} is uniformly continuous, given $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that

$$
\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right| \leq \varepsilon
$$

for all $x, y \in \Omega$ with $|x-y| \leq \delta$. Since u is the difference of two increasing functions, it is continuous except on a countable number of points. Moreover it is bounded in $[a, b]$ by some contant M. Hence, it is Riemann integrable in [a,b]. In turn $u \varphi^{\prime}$ is Riemann integrable. Hence, using Riemann sums, there exists a partition

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

with $x_{i}-x_{i-1} \leq \delta$ for all $i=1, \ldots, n$ such that

$$
\left|\int_{a}^{b} u \varphi^{\prime} d x-\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \leq \varepsilon
$$

In turn,

$$
\begin{aligned}
\left|\int_{a}^{b} u \varphi^{\prime} d x\right| & \leq\left|\int_{a}^{b} u \varphi^{\prime} d x-\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right|+\left|\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
& \leq \varepsilon+\left|\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| .
\end{aligned}
$$

By the mean value theorem,

$$
\varphi\left(x_{i}\right)-\varphi\left(x_{i-1}\right)=\varphi^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

for some $c_{i} \in\left[x_{i}, x_{i-1}\right]$. Hence,

$$
\begin{aligned}
& \left|\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right|=\left|\sum_{i=1}^{n} u\left(x_{i}\right)\left[\varphi^{\prime}\left(x_{i}\right)-\varphi^{\prime}\left(c_{i}\right)+\varphi^{\prime}\left(c_{i}\right)\right]\left(x_{i}-x_{i-1}\right)\right| \\
& \quad \leq \sum_{i=1}^{n}\left|u\left(x_{i}\right)\right|\left|\varphi^{\prime}\left(x_{i}\right)-\varphi^{\prime}\left(c_{i}\right)\right|\left(x_{i}-x_{i-1}\right)+\left|\sum_{i=1}^{n} u\left(x_{i}\right) \varphi^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
& \quad \leq M \varepsilon(b-a)+\left|\sum_{i=1}^{n} u\left(x_{i}\right)\left(\varphi\left(x_{i}\right)-\varphi\left(x_{i-1}\right)\right)\right|
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|\sum_{i=1}^{n} u\left(x_{i}\right)\left(\varphi\left(x_{i}\right)-\varphi\left(x_{i-1}\right)\right)\right| & =\left|\sum_{i=1}^{n} u\left(x_{i}\right) \varphi\left(x_{i}\right)-\sum_{k=0}^{n-1} u\left(x_{k+1}\right) \varphi\left(x_{k}\right)\right| \\
& =\left|\sum_{i=1}^{n}\left(u\left(x_{i}\right)-u\left(x_{i+1}\right)\right) \varphi\left(x_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|u\left(x_{i}\right)-u\left(x_{i+1}\right)\right| \leq \operatorname{Var} u
\end{aligned}
$$

where we have used the fact that $\varphi(b)=0$ and that $\|\varphi\|_{\infty} \leq 1$.
In conclusion, we have show that

$$
\left|\int_{a}^{b} u \varphi^{\prime} d x\right| \leq \varepsilon+M \varepsilon(b-a)+\operatorname{Var} u
$$

Letting $\varepsilon \rightarrow 0^{+}$and recalling that $u \varphi^{\prime}=0$ outside $[a, b]$ gives

$$
\left|\int_{\Omega} u \varphi^{\prime} d x\right| \leq \operatorname{Var} u
$$

Taking the supremum over all such φ gives

$$
|D u|(\Omega) \leq \operatorname{Var} u
$$

Step 2: Conversely, let $u \in B V(\Omega)$ and assume first that $\mu:=D u$ is a (positive) measure, $\mu: \mathcal{B}(\Omega) \rightarrow[0, \infty)$ and define

$$
w(x):=\mu(\Omega \cap(-\infty, x))
$$

Note that w is left continuous and increasing. To see this fix $x \in \Omega$ and let $x_{n} \nearrow x$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} w\left(x_{n}\right) & =\lim _{n \rightarrow \infty} \mu\left(\Omega \cap\left(-\infty, x_{n}\right)\right)=\mu\left(\bigcup_{n=1}^{\infty} I \cap\left(-\infty, x_{n}\right)\right) \\
& =\mu(I \cap(-\infty, x))=w(x) .
\end{aligned}
$$

Let $\varphi \in C_{c}^{\infty}(\Omega)$, then

$$
\begin{aligned}
\int_{\Omega} w \varphi^{\prime} d x & =\int_{\Omega} \mu(\Omega \cap(-\infty, x)) \varphi^{\prime}(x) d x \\
& =\int_{\Omega} \varphi^{\prime}(x)\left[\int_{\Omega} \chi_{(-\infty, x)}(y) d \mu(y)\right] d x \\
& =\int_{\Omega \times \Omega} h(x, y) d\left(\mu \times \mathcal{L}^{1}\right)(y, x)
\end{aligned}
$$

where we have considered the product measure $\mu \times \mathcal{L}^{1}$ and the function h is defined by

$$
h(x, y):= \begin{cases}\varphi^{\prime}(x) & \text { if } y<x \\ 0 & \text { if } y \geq x\end{cases}
$$

By Fubini's theorem

$$
\begin{aligned}
\int_{\Omega \times \Omega} h(x, y) d \mu & =\int_{\Omega}\left[\int_{\Omega} \chi_{(y, \infty)}(x) \varphi^{\prime}(x) d x\right] d \mu(y) \\
& =\int_{\Omega}\left[\int_{y}^{\infty} \varphi^{\prime}(x) d x\right] d \mu(y)=\int_{\Omega}(\varphi(\infty)-\varphi(y)) d \mu(y)
\end{aligned}
$$

Hence,

$$
\int_{\Omega} w \varphi^{\prime} d x=-\int_{\Omega} \varphi d \mu
$$

On the other hand,

$$
\int_{\Omega} u \varphi^{\prime} d x=-\int_{\Omega} \varphi d \mu
$$

Thus, by subtracting these two equalities, we get

$$
\int_{\Omega}(u-w) \varphi^{\prime} d x=0
$$

for all $C_{c}^{\infty}(\Omega)$. This implies that $u-w$ is a constant, say, $u(x)-w(x)=c$ for \mathcal{L}^{1} a.e. $x \in \Omega$. Define

$$
v(x):=w(x)+c=\mu(\Omega \cap(-\infty, x))+c .
$$

Then v is left-continuous and increasing. Hence,

$$
\operatorname{Var} v=\sup v-\inf v=\mu(\Omega)=|D u|(\Omega)
$$

Step 3: Finally, let $u \in B V(\Omega)$ and let $\lambda:=D u$. Write $\lambda=\lambda^{+}-\lambda^{-}$and define

$$
w^{ \pm}(x)=\lambda^{ \pm}(\Omega \cap(-\infty, x))
$$

and $w:=w^{+}-w^{-}$. Reasoning as before, we find that

$$
\begin{aligned}
\int_{\Omega} w \varphi^{\prime} d x & =\int_{\Omega} w^{ \pm} \varphi^{\prime} d x-\int_{\Omega} w^{-} \varphi^{\prime} d x \\
& =-\int_{\Omega} \varphi d \lambda^{+}+\int_{\Omega} \varphi d \lambda^{-}=-\int_{\Omega} \varphi d \lambda
\end{aligned}
$$

and so

$$
\int_{\Omega}(u-w) \varphi^{\prime} d x=0
$$

for all $C_{c}^{\infty}(\Omega)$, which $u(x)-w(x)=c$ for \mathcal{L}^{1} a.e. $x \in \Omega$. Define

$$
v(x):=w(x)+c=\lambda(\Omega \cap(-\infty, x))+c .
$$

Then

$$
\begin{aligned}
\operatorname{Var} v & =\operatorname{Var}\left(w^{+}-w^{-}+c\right) \leq \operatorname{Var}\left(w^{+}\right)+\operatorname{Var}\left(w^{-}\right) \\
& =\lambda^{+}(\Omega)+\lambda^{-}(\Omega)=\lambda(\Omega)=|D u|(\Omega)
\end{aligned}
$$

Observe that since $\int_{\Omega} \varphi^{\prime} d x=0$, we have that

$$
\int_{\Omega} v \varphi^{\prime} d x=\int_{\Omega}(w+c) \varphi^{\prime} d x=\int_{\Omega} w \varphi^{\prime} d x=-\int_{\Omega} \varphi d \lambda
$$

Hence, $v \in B V(\Omega)$ and $D v=D u$. Thus, by Step 1,

$$
|D v|(\Omega)=|D u|(\Omega) \leq \operatorname{Var} v
$$

which shows that $|D u|(\Omega)=\operatorname{Var} v$.

References

[1] G. Dal Maso, Functions of bounded variation, Lecture Notes (unpublished), SISSA, Trieste, 2002.

