1 An Alternative Proof of Theorem 7.2

In this section we present an alternative proof of Theorem 7.2, taken from [1].

Theorem 1 (Theorem 7.2) Let $\Omega \subset \mathbb{R}$ be an open set. If $u : \Omega \to \mathbb{R}$ is integrable and belongs to $BPV(\Omega)$, then $u \in BV(\Omega)$ and

$$|Du|(\Omega) \leq \operatorname{Var} u$$

Conversely, if $u \in BV(\Omega)$, then u admits a right continuous representative \overline{u} in BPV (Ω) such that

$$\operatorname{Var}\overline{u} = |Du|(\Omega).$$

Proof. Step 1: Let Ω be in interval and let $u : \Omega \to \mathbb{R}$ be an integrable function with finite pointwise variation. Let $\varphi \in C_c^{\infty}(\Omega)$ with $\|\varphi\|_{\infty} \leq 1$ and let $[a, b] \subset \Omega$ contain the support of φ . Since φ' is uniformly continuous, given $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that

$$\left|\varphi'\left(x\right) - \varphi'\left(y\right)\right| \le \varepsilon$$

for all $x, y \in \Omega$ with $|x - y| \leq \delta$. Since u is the difference of two increasing functions, it is continuous except on a countable number of points. Moreover it is bounded in [a, b] by some contant M. Hence, it is Riemann integrable in [a, b]. In turn $u\varphi'$ is Riemann integrable. Hence, using Riemann sums, there exists a partition

$$a = x_0 < x_1 < \dots < x_n = b$$

with $x_i - x_{i-1} \leq \delta$ for all $i = 1, \ldots, n$ such that

$$\left|\int_{a}^{b} u\varphi' \, dx - \sum_{i=1}^{n} u\left(x_{i}\right)\varphi'\left(x_{i}\right)\left(x_{i} - x_{i-1}\right)\right| \leq \varepsilon.$$

In turn,

$$\left| \int_{a}^{b} u\varphi' \, dx \right| \leq \left| \int_{a}^{b} u\varphi' \, dx - \sum_{i=1}^{n} u\left(x_{i}\right)\varphi'\left(x_{i}\right)\left(x_{i} - x_{i-1}\right) \right| + \left| \sum_{i=1}^{n} u\left(x_{i}\right)\varphi'\left(x_{i}\right)\left(x_{i} - x_{i-1}\right) \right|$$
$$\leq \varepsilon + \left| \sum_{i=1}^{n} u\left(x_{i}\right)\varphi'\left(x_{i}\right)\left(x_{i} - x_{i-1}\right) \right|.$$

By the mean value theorem,

$$\varphi(x_i) - \varphi(x_{i-1}) = \varphi'(c_i) (x_i - x_{i-1})$$

for some $c_i \in [x_i, x_{i-1}]$. Hence,

$$\left|\sum_{i=1}^{n} u(x_{i}) \varphi'(x_{i}) (x_{i} - x_{i-1})\right| = \left|\sum_{i=1}^{n} u(x_{i}) [\varphi'(x_{i}) - \varphi'(c_{i}) + \varphi'(c_{i})] (x_{i} - x_{i-1})\right|$$

$$\leq \sum_{i=1}^{n} |u(x_{i})| |\varphi'(x_{i}) - \varphi'(c_{i})| (x_{i} - x_{i-1}) + \left|\sum_{i=1}^{n} u(x_{i}) \varphi'(c_{i}) (x_{i} - x_{i-1})\right|$$

$$\leq M\varepsilon (b - a) + \left|\sum_{i=1}^{n} u(x_{i}) (\varphi(x_{i}) - \varphi(x_{i-1}))\right|.$$

Now

$$\left|\sum_{i=1}^{n} u(x_{i}) \left(\varphi(x_{i}) - \varphi(x_{i-1})\right)\right| = \left|\sum_{i=1}^{n} u(x_{i}) \varphi(x_{i}) - \sum_{k=0}^{n-1} u(x_{k+1}) \varphi(x_{k})\right|$$
$$= \left|\sum_{i=1}^{n} \left(u(x_{i}) - u(x_{i+1})\right) \varphi(x_{i})\right|$$
$$\leq \sum_{i=1}^{n} |u(x_{i}) - u(x_{i+1})| \leq \operatorname{Var} u,$$

where we have used the fact that $\varphi\left(b\right)=0$ and that $\left\|\varphi\right\|_{\infty}\leq 1$.

In conclusion, we have show that

$$\left| \int_{a}^{b} u\varphi' \, dx \right| \leq \varepsilon + M\varepsilon \, (b-a) + \operatorname{Var} u.$$

Letting $\varepsilon \to 0^+$ and recalling that $u\varphi' = 0$ outside [a, b] gives

$$\left|\int_{\Omega} u\varphi' \, dx\right| \leq \operatorname{Var} u.$$

Taking the supremum over all such φ gives

$$|Du|(\Omega) \leq \operatorname{Var} u.$$

Step 2: Conversely, let $u \in BV(\Omega)$ and assume first that $\mu := Du$ is a (positive) measure, $\mu : \mathcal{B}(\Omega) \to [0, \infty)$ and define

$$w(x) := \mu(\Omega \cap (-\infty, x)).$$

Note that w is left continuous and increasing. To see this fix $x \in \Omega$ and let $x_n \nearrow x$. Then

$$\lim_{n \to \infty} w(x_n) = \lim_{n \to \infty} \mu(\Omega \cap (-\infty, x_n)) = \mu\left(\bigcup_{n=1}^{\infty} I \cap (-\infty, x_n)\right)$$
$$= \mu(I \cap (-\infty, x)) = w(x).$$

Let $\varphi \in C_c^{\infty}(\Omega)$, then

$$\begin{split} \int_{\Omega} w\varphi' \, dx &= \int_{\Omega} \mu \left(\Omega \cap (-\infty, x) \right) \varphi' \left(x \right) \, dx \\ &= \int_{\Omega} \varphi' \left(x \right) \left[\int_{\Omega} \chi_{(-\infty, x)} \left(y \right) \, d\mu \left(y \right) \right] \, dx \\ &= \int_{\Omega \times \Omega} h \left(x, y \right) \, d \left(\mu \times \mathcal{L}^1 \right) \left(y, x \right), \end{split}$$

where we have considered the product measure $\mu\times \mathcal{L}^1$ and the function h is defined by

$$h(x,y) := \begin{cases} \varphi'(x) & \text{if } y < x, \\ 0 & \text{if } y \ge x. \end{cases}$$

By Fubini's theorem

$$\int_{\Omega \times \Omega} h(x, y) \, d\mu = \int_{\Omega} \left[\int_{\Omega} \chi_{(y, \infty)}(x) \, \varphi'(x) \, dx \right] \, d\mu(y)$$
$$= \int_{\Omega} \left[\int_{y}^{\infty} \varphi'(x) \, dx \right] \, d\mu(y) = \int_{\Omega} \left(\varphi(\infty) - \varphi(y) \right) \, d\mu(y) \, .$$

Hence,

$$\int_{\Omega} w\varphi' \, dx = -\int_{\Omega} \varphi \, d\mu.$$

On the other hand,

$$\int_{\Omega} u\varphi' \, dx = -\int_{\Omega} \varphi \, d\mu.$$

Thus, by subtracting these two equalities, we get

$$\int_{\Omega} \left(u - w \right) \varphi' \, dx = 0$$

for all $C_{c}^{\infty}(\Omega)$. This implies that u - w is a constant, say, u(x) - w(x) = c for \mathcal{L}^{1} a.e. $x \in \Omega$. Define

$$v(x) := w(x) + c = \mu(\Omega \cap (-\infty, x)) + c.$$

Then v is left-continuous and increasing. Hence,

$$\operatorname{Var} v = \sup v - \inf v = \mu(\Omega) = |Du|(\Omega).$$

Step 3: Finally, let $u \in BV(\Omega)$ and let $\lambda := Du$. Write $\lambda = \lambda^{+} - \lambda^{-}$ and define

$$w^{\pm}(x) = \lambda^{\pm} \left(\Omega \cap (-\infty, x) \right)$$

and $w := w^+ - w^-$. Reasoning as before, we find that

$$\int_{\Omega} w\varphi' \, dx = \int_{\Omega} w^{\pm} \varphi' \, dx - \int_{\Omega} w^{-} \varphi' \, dx$$
$$= -\int_{\Omega} \varphi \, d\lambda^{+} + \int_{\Omega} \varphi \, d\lambda^{-} = -\int_{\Omega} \varphi \, d\lambda$$

and so

$$\int_{\Omega} \left(u - w \right) \varphi' \, dx = 0$$

for all $C_{c}^{\infty}(\Omega)$, which u(x) - w(x) = c for \mathcal{L}^{1} a.e. $x \in \Omega$. Define

$$v(x) := w(x) + c = \lambda \left(\Omega \cap (-\infty, x) \right) + c.$$

Then

$$\operatorname{Var} v = \operatorname{Var} \left(w^{+} - w^{-} + c \right) \leq \operatorname{Var} \left(w^{+} \right) + \operatorname{Var} \left(w^{-} \right)$$
$$= \lambda^{+} \left(\Omega \right) + \lambda^{-} \left(\Omega \right) = \lambda \left(\Omega \right) = \left| Du \right| \left(\Omega \right).$$

Observe that since $\int_{\Omega} \varphi' \, dx = 0$, we have that

$$\int_{\Omega} v\varphi' \, dx = \int_{\Omega} \left(w + c \right) \varphi' \, dx = \int_{\Omega} w\varphi' \, dx = -\int_{\Omega} \varphi \, d\lambda.$$

Hence, $v \in BV(\Omega)$ and Dv = Du. Thus, by Step 1,

$$|Dv|(\Omega) = |Du|(\Omega) \le \operatorname{Var} v,$$

which shows that $|Du|(\Omega) = \operatorname{Var} v$.

References

 G. Dal Maso, Functions of bounded variation, Lecture Notes (unpublished), SISSA, Trieste, 2002.