1 An Alternative Proof of Theorem 7.2

In this section we present an alternative proof of Theorem 7.2, taken from [1].

Theorem 1 (Theorem 7.2) Let & C R be an open set. Ifu : Q — R is
integrable and belongs to BPV (Q), then u € BV (Q) and

|Du| () < Varu.

Conversely, if u € BV (), then u admits a right continuous representative @
in BPV (Q) such that
Varu = |Du| ().

Proof. Step 1: Let  be in interval and let u :  — R be an integrable
function with finite pointwise variation. Let ¢ € Cg° () with [l¢||,, < 1 and
let [a,b] C £ contain the support of ¢. Since ¢’ is uniformly continuous, given
€ > 0, there exists 6 = 6 (¢) > 0 such that

lp" (z) =" (y)| <€

for all z,y € Q with |z —y| < §. Since u is the difference of two increasing
functions, it is continuous except on a countable number of points. Moreover
it is bounded in [a,b] by some contant M. Hence, it is Riemann integrable in
[a,b]. In turn ue’ is Riemann integrable. Hence, using Riemann sums, there
exists a partition

a=x9g<x1<--<xTp=>

with 2; —x;_1 <d for alli=1,...,n such that

b n
/ up' dx — Zu (i) @' (@) (m; —xi—1)| < €.
@ i=1
In turn,
b b n n
/ up’ dr| < / up’ dr — Z u(z) @' () (g — zi1) | + u(z;) @' (@) (2
@ @ i=1 i=1
St D u(m) ¢ (@) (2 — mim1)|-
i=1

By the mean value theorem,

@ (xi) =@ (ric1) = ¢ (ci) (5 — x51)

— Ti—1)



for some ¢; € [z;,2;-1]. Hence,

u(zi) [ (w:) — @' (ci) + ¢ ()] (wi — wi1)

<D lu@)ll¢ (2:) = ¢ (e)] (i = wim1) + | ul@i) ¢ (e) (w0 — wim1)
i=1 i=1
< Me(b—a)+ Y uli) (o (@) — o (2im1))

Z u(w;) —u(zit)) ¢ (z:)

n
Z ) —u(xiy1)| < Varu,

where we have used the fact that ¢ (b) = 0 and that [j¢[| <1
In conclusion, we have show that

b
/ up dx

Letting ¢ — 07 and recalling that ug’ = 0 outside [a, b] gives

/ uy' dx
Q

Taking the supremum over all such ¢ gives

<e+ Me(b—a)+ Varu.

< Var u.

|Du| () < Varu.

Step 2: Conversely, let u € BV () and assume first that g := Du is a
(positive) measure, p: B () — [0,00) and define

w(x):=p(QN(—o0,z)).

Note that w is left continuous and increasing. To see this fix x € 2 and let
Zn /" x. Then

~

oo
lim w(z,) = lim p(QN(—0c0,z,)) = (U In (—oo,a:n)>
n=1

= p(IN(=00,2)) = w(z).



Let ¢ € C (), then

[ o do= [ w@noa)d @) do

:/Q@’ (2) UQ X(=o0,2) (¥) dp(y) | da
- /Qxﬂh(x,y) d(pxLY) (y,z),

where we have considered the product measure p x £! and the function h is

defined by
_ ] ¢ @) ify<a,
h(x,y){ 0 ify > .

By Fubini’s theorem

/ h(z,y) du
QxQ

J
J

[ /Q X(y,00) (2) ¢’ (@) dw} dp (y)

2

2

Uyw ¥ (@) dw} dpu (y) :/Q(so (00) = ¢ (y) du(y) -

/wgo’dm:—/gpdu.
Q Q
/wp’dwz—/gpd,u.
Q Q

Thus, by subtracting these two equalities, we get

/Q(u—w)cp’da?:0

for all C'¢° (£2). This implies that u — w is a constant, say, u (z) — w (z) = ¢ for
LY ae. x € Q. Define

Hence,

On the other hand,

v(z)=w(x)+ec=p(QN(—oc0,z)) +c.
Then v is left-continuous and increasing. Hence,
Varv = supv — inf v = 1 () = |Du| ().

Step 3: Finally, let u € BV () and let A := Du. Write A = At — A\~ and
define
w* (z) = AT (2N (o0, 1))

and w := wT — w™. Reasoning as before, we find that

/wcp’dac:/wicp’dm—/w_gp’dx
Q Q Q
:—/gpd)\++/g0d)\_=—/gpd)\,
Q Q Q



and so

/ (u—w)¢' dz=0

Q

for all C2° (2), which u (z) —w (z) = ¢ for L a.e. z € Q. Define
v(z)=w(x)+c=A(QN(—00,z)) +c

Then

= AT (Q)+ A7 (Q) = A(Q) = [Dul ().

Varv = Var (w+ —w 4+ c) < Var (w+) + Var (w*)

Observe that since fQ ¢’ dx = 0, we have that

/vgo'dx:/(w—i—c)go’dx:/wgo’dx:—/cpd)\.
Q Q Q Q

Hence, v € BV (Q) and Dv = Du. Thus, by Step 1,
|Dv| (2) = |Du| () < Varw,

which shows that |Du| (Q) = Varv. =m
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