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Preface

With the advent of the method of pseudo-holomorphic curves developed by

Gromov in the 80’s and the subsequent Floer’s invention of elliptic Morse theory

resulted in Floer cohomology, the landscape of symplectic geometry has changed

drastically. Many previously intractable problems in symplectic geometry were

solved by the techniques of pseudo-holomorphic curves, and the concept of sym-

plectic topology gradually began to take shape. This progress was accompanied by

parallel developments in physics most notably in closed string theory.

In 1993, partially motivated by Donaldson’s pants product construction in Floer

cohomology, the first named author introduced the structure of an A∞-category in

symplectic geometry whose objects are Lagrangian submanifolds and whose mor-

phisms are the Floer cohomologies (or complexes). Based on this algebraic frame-

work, Kontsevich proposed the celebrated homological mirror symmetry between

the derived category of coherent sheaves and the Fukaya category of Lagrangian

submanifolds in his 1994 ICM talk in Zürich. Enhanced by the later development

in open string theory of D-branes, this homological mirror symmetry has been a

source of many new insights and progresses in both algebraic geometry and symplec-

tic geometry as well as in physics. However the rigorous formulation of homological

mirror symmetry has not been made, largely due to lack of understanding the Floer

theory of Lagrangian submanifolds itself.

In this book, we explain how the obstruction to and anomaly in the construc-

tion of Floer cohomology arise, provide a precise formulation of the obstructions

and then carry out detailed algebraic and analytic study of deformation theory of

Floer cohomology. It turns out that even a description of such an obstruction (in

a mathematically precise way) requires new homological algebra of filtered A∞-

algebras. In addition, verification of existence of such an algebraic structure in the

geometric context of Lagrangian submanifolds requires non-trivial analytic study of

the corresponding moduli space of pseudo-holomorphic discs. We also provide var-

ious immediate applications of the so constructed Floer cohomology to problems in

symplectic topology. Many of these improve the previously known results obtained

via Floer theory and some firsthand applications to homological mirror symmetry

are new. We expect more nontrivial applications of the theory will soon follow as

its true potential is unveiled and then realized.

While we have been preparing this book, there have been several important

developments in symplectic geometry and in related fields. The relationship be-

tween topological strings, D-branes and pseudo-holomorphic curves and symplectic

Floer theory is now more clearly understood. The usage of higher algebraic struc-

tures in Floer theory, which we have been promoting while writing this book, has

now become a popular and essential area of research. Furthermore advances of

the techniques handling various moduli spaces of solutions to nonlinear PDE’s,

xi



xii PREFACE

intertwined with the formalism of higher algebraic structures, has now made the

geometric picture more transparent. This will help facilitate the further progression

of the geometric theory. In this book we take full advantage of these developments

and provide the Floer theory of Lagrangian submanifolds in the most general form

available at this time. We hope that this book will be a stepping stone for future

advancements in symplectic geometry and homological mirror symmetry.

Our collaboration which has culminated in completion of this book started

during the 1996 (8 July–12 July) conference held in Ascona, Switzerland. We

hardly imagined then that our project would continue to span more than 10 years.

We have greatly enjoyed this collaboration and hope to continue it into the coming

decades. In fact our second journey into newly landscaped field of symplectic

topology and mirror symmetry has already begun, and we hope to garner more

fruits of collaboration: The scene in front looks very different and much more

exciting than the one we left behind 13 years ago!

June 9 2009. Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, Kaoru Ono.
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