The Generalized

Riemann Integral

Robert M. McLeod

THE GENERALIZED RIEMANN INTEGRAL

By

ROBERT M. McLEOD

THE

CARUS MATHEMATICAL MONOGRAPHS

Published by
THE MATHEMATICAL ASSOCIATION OF AMERICA

Committee on Publications
E. F. BECKENBACH, Chairman

Subcommittee on Carus Monographs
DANIEL T. FINKBEINER, Chairman
RALPH P. BOAS
DAN E. CHRISTIE
ROBERT GILMER
GEORGE PIRANIAN

THE CARUS MATHEMATICAL MONOGRAPHS are an expression of the desire of Mrs. Mary Hegeler Carus, and of her son, Dr. Edward H. Carus, to contribute to the dissemination of mathematical knowledge by making accessible at nominal cost a series of expository presentations of the best thoughts and keenest researches in pure and applied mathematics. The publication of the first four of these monographs was made possible by a notable gift to the Mathematical Association of America by Mrs. Carus as sole trustee of the Edward C. Hegeler Trust Fund. The sales from these have resulted in the Carus Monograph Fund, and the Mathematical Association has used this as a revolving book fund to publish the succeeding monographs.

The expositions of mathematical subjects which the monographs contain are set forth in a manner comprehensible not only to teachers and students specializing in mathematics, but also to scientific workers in other fields, and especially to the wide circle of thoughtful people who, having a moderate acquaintance with elementary mathematics, wish to extend their knowledge without prolonged and critical study of the mathematical journals and treatises. The scope of this series includes also historical and biographical monographs.

The following monographs have been published:
No. 1. Calculus of Variations, by G. A. BLISS
No. 2. Analytic Functions of a Complex Variable, by D. R. CURTISS
No. 3. Mathematical Statistics, by H. L. RIETZ
No. 4. Projective Geometry, by J. W. YOUNG
No. 5. A History of Mathematics in America before 1900, by D. E. SMITH and JEKUTHIEL GINSBURG (out of print)

No. 6. Fourier Series and Orthogonal Polynomials, by DUNHAM JACKSON

No. 7. Vectors and Matrices, by C. C. MacDUFFEE
No. 8. Rings and Ideals, by N. H. McCOY
No. 9. The Theory of Algebraic Numbers, Second edition, by HARRY POLLARD and HAROLD G. DIAMOND

No. 10. The Arithmetic Theory of Quadratic Forms, by B. W. JONES
No. 11. Irrational Numbers, by IVAN NIVEN
No. 12. Statistical Independence in Probability, Analysis and Number Theory, by MARK KAC

No. 13. A Primer of Real Functions, by RALPH P. BOAS, JR.
No. 14. Combinatorial Mathematics, by HERBERT JOHN RYSER
No. 15. Noncommutative Rings, by I. N. HERSTEIN
No. 16. Dedekind Sums, by HANS RADEMACHER and EMIL GROSSWALD

No. 17. The Schwarz Function and its Applications, by PHILIP J. DAVIS

No. 18. Celestial Mechanics, by HARRY POLLARD
No. 19. Field Theory and Its Classical Problems, by CHARLES ROBERT HADLOCK

No. 20. The Generalized Riemann Integral, by ROBERT M. McLEOD

THE GENERALIZED RIEMANN INTEGRAL

By
ROBERT M. McLEOD Kenyon College

Published and Distributed by THE MATHEMATICAL ASSOCIATION OF AMERICA
© 1980 by
The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 80-81043 Hardcover (out of print) ISBN 978-0-88385-021-3 Paperback ISBN 978-0-88385-045-9
eISBN 978-1-61444-020-8
Printed in the United States of America Current printing (last digit): 10987654321

PREFACE

In calculus courses we learn what integrals are and how to use them to compute areas, volumes, work and other quantities which are useful and interesting. The calculus sequence, and frequently the whole of the undergraduate mathematics program, does not reach the most powerful theorems of integration theory. I believe that the generalized Riemann integral can be used to bring the full power of the integral within the reach of many who, up to now, get no glimpse of such results as monotone and dominated convergence theorems. As its name hints, the generalized Riemann integral is defined in terms of Riemann sums. It reaches a higher level of generality because a more general limit process is applied to the Riemann sums than the one familiar from calculus. This limit process is, all the same, a natural one which can be introduced through the problem of approximating the area under a function graph by sums of areas of rectangles. The path from the definition to theorems exhibiting the full power of the integral is direct and short.

I address myself in this book to persons who already have an acquaintance with integrals which they wish to extend and to the teachers of generations of students to come. To the first of these groups, I express the hope that the organization of the work will make it possible for you to extract the principal results without struggling through technical details which you find formidable or extraneous to your purposes. The technical level starts low at the
opening of each chapter. Thus you are invited to follow each chapter as far as you wish and then to skip to the beginning of the next. To readers who do wish to see all the details of the arguments, let me say that they are given. It was a virtual necessity to include them. There are no works to refer you to which are generally available and compatible with this one in approach to integration.

I first learned of the generalized Riemann integral from the pioneering work of Ralph Henstock. I am in his debt for the formulation of the basic concept and for many important methods of proof. Nevertheless, my presentation of the subject differs considerably from his. In particular, I chose to use only a part of his technical vocabulary and to supplement the part I selected with terms from E. J. McShane and other terms of my own devising.

I wish to express my appreciation to the members of the Subcommittee on Carus Monographs for their encouragement. I am particularly indebted to D. T. Finkbeiner. His support enabled me to persevere through the years since this writing project began. He and Helene Shapiro also worked through an earlier version of the book and provided helpful comments.

I thank the Department of Mathematical Sciences of New Mexico State University for its generous hospitality during a sabbatical leave year devoted in large part to the writing of the first version of the book. Finally, I thank Jackie Hancock, Joy Krog, and Hope Weir for expert typing.

Gambier, Ohio
Robert M. McLeod
January, 1980

LIST OF SYMBOLS

		Pagr
$\boldsymbol{\gamma}$	gauge	10
R	real numbers	17
$\mathbf{R}^{\boldsymbol{q}}$	q-dimensional Euclidean space	17
$\|x\|$	Euclidean length	17
Ф, $\mathcal{E}, \mathfrak{F}$	divisions, tagged divisions	17
$2 J$	tagged interval	18
$L(J)$	length of interval J	18
$f L(z J)$	term in Riemann sum	18
$f L\left(D^{2}\right)$	Riemann sum	18
$\int_{a}^{b} f$	integral on [$a, b]$	19
$\overline{\mathbf{R}}$	extended real numbers	22
$L([a, \infty])$	length of unbounded interval	23
$\overline{\mathbf{R}}^{p}$	extended p-dimensional space	31
I	closed interval	31
$M(I)$	measure of interval I	33
$f M(\mathbb{D})$	Riemann sum	33
$\int_{1} f$	integral on interval I	33
$\int_{E} f$	integral on a set E	34
$\overline{\mathbf{N}}$	extended positive integers	36
$\Delta F(J)$	increment of F	43
$\lim _{\oplus} f M(\mathbb{D})$	limit notation for the integral	73
$\nu(5)$	sum of integrals	77

$|\nu|(\varepsilon) \quad$ sum of absolute values of integrals 77
$f \vee g \quad$ supremum of f and g 82
$f \wedge g \quad$ infimum of f and g 82
$f^{+} \quad$ positive part of f 82
$f^{-} \quad$ negative part of f 82
$\lim _{\delta} f ; \lim _{x, \delta} f(x) \quad$ limit according to a direction 94
$\lim _{x, \delta}\left(\lim _{y, 厅} f(x, y)\right)$ iterated limits 94
fM－null null set 106
χ_{E} characteristic function of E 123
$\mu(E)$ measure of E 123
$f^{-1}(E)$ inverse image 133
$f(\cdot, y)$ the function $x \rightarrow f(x, y)$ 152
$\boldsymbol{\Phi}$－null null set 159
$f \Delta \alpha(2)$ sum for Riemann－Stieltjes integral 177
$(\Re) \int_{a}^{b} f d \alpha$ norm integral 177
（凡） $\int_{a}^{b} f d \alpha$ refinement integral 177
（3） $\int_{a}^{b} f d \alpha$ gauge integral 177
$\|$｜$\|$ norm of a division 181
凡－limit norm limit 181
R－limit refinement limit 181
\mathcal{G}－limit gauge limit 181
$\alpha(c+)$ right－hand limit 182
$\alpha(b-)$ left－hand limit 187
$\phi(z)$ left－hand correction 198
$\psi(z)$ right－hand correction 198
V_{a}^{b} total variation 201
$\int_{a} f d g$ line integral 214
$\int_{a} f(x, y) d x$ line integral 216
（e） $\int_{J} f$ Lebesgue integral 235

CONTENTS

PAGE
Preface vii
List of Symbols ix
Introduction 1
Chapter 1-Definition of the Generalized Riemann Integral 5
1.1 Selecting Riemann sums. 7
1.2 Definition of the generalized Riemann in- tegral 17
1.3 Integration over unbounded intervals 21
1.4 The fundamental theorem of calculus 25
1.5 The status of improper integrals 28
1.6 Multiple integrals 31
1.7 Sum of a series viewed as an integral 36
S1.8 The limit based on gauges 38
S1.9 Proof of the fundamental theorem 40
1.10 Exercises 45
Chapter 2-Basic Properties of the Integral 47
2.1 The integral as a function of the integrand 48
2.2 The Cauchy criterion 50
2.3 Integrability on subintervals 51
2.4 The additivity of integrals 52
2.5 Finite additivity of functions of intervals 55
2.6 Continuity of integrals. Existence of primitives. 58
2.7 Change of variables in integrals on inter- vals in $\overline{\mathbf{R}}$ 59
S2.8 Limits of integrals over expanding intervals 65
2.9 Exercises 68
Chapter 3-Absolute Integrability and Con- vergence Theorems 71
3.1 Henstock's lemma 74
3.2 Integrability of the absolute value of an integrable function 77
3.3 Lattice operations on integrable functions 81
3.4 Uniformly convergent sequences of func- tions 83
3.5 The monotone convergence theorem 86
3.6 The dominated convergence theorem 88
S3.7 Proof of Henstock's lemma 90
S3.8 Proof of the criterion for integrability of $|f|$ 91
S3.9 Iterated limits 93
S3.10 Proof of the monotone and dominated convergence theorems 96
3.11 Exercises 101
Chapter 4 -Integration on Subsets of Intervals 103
4.1 Null functions and null sets. 104
4.2 Convergence almost everywhere 110
4.3 Integration over sets which are not inter- vals 113
4.4 Integration of continuous functions on closed, bounded sets 116
4.5 Integrals on sequences of sets 118
4.6 Length, area, volume, and measure 122
4.7 Exercises 128
Chapter 5-Measurable Functions 131
5.1 Measurable functions. 133
5.2 Measurability and absolute integrability 135
5.3 Operations on measurable functions. 139
5.4 Integrability of products. 141
S5.5 Approximation by step functions 143
5.6 Exercises 147
Chapter 6-Multiple and Iterated Integrals 149
6.1 Fubini's theorem 150
6.2 Determining integrability from iterated integrals 154
S6.3 Compound divisions. Compatibility theorem 164
S6.4 Proof of Fubini's theorem 168
S6.5 Double series 171
6.6 Exercises 173
Chapter 7-Integrals of Stielties Type 177
7.1 Three versions of the Riemann-Stieltjes integral 180
7.2 Basic properties of Riemann-Stieltjes integrals 183
7.3 Limits, continuity, and differentiability of integrals 187
7.4 Values of certain integrals 189
7.5 Existence theorems for Riemann-Stieltjes integrals 192
7.6 Integration by parts 195
7.7 Integration of absolute values. Lattice operations 200
7.8 Monotone and dominated convergence. 204
7.9 Change of variables 205
7.10 Mean value theorems for integrals 209
S7.11 Sequences of integrators 211
S7.12 Line integrals 214
S7.13 Functions of bounded variation and reg- ulated functions 220
S7.14 Proof of the absolute integrability theorem 225
7.15 Exercises 227
Chapter 8-Comparison of Integrals 231
S8.1 Characterization of measurable sets 232
S8.2 Lebesgue measure and integral 234
S8.3 Characterization of absolute integrability using Riemann sums 236
8.4 Suggestions for further study 244
References 245
APPENDIX Solutions of In-text Exercises 247
INDEX 269
8. ___ A unified theory of integration, Amer. Math. Monthly, 80 (1973) 349-359.
9. E. J. McShane and Truman Botts, Real Analysis, Van Nostrand, Princeton, 1959.
10. M. E. Munroe, Measure and Integration, 2nd ed., AddisonWesley, Reading, Mass., 1971.
11. A. E. Taylor, General Theory of Functions and Integration, Blaisdell, Waltham, Mass., 1965.
12. J. H. Williamson, Lebesgue Integration, Holt, Rinehart and Winston, New York, 1962.

APPENDIX

SOLUTIONS OF IN-TEXT EXERCISES

Chapter 1

1. Begin by choosing an integer m so that $1 / m<\epsilon$. Enclose each number $1 / j$ in an interval $\left[1 / j-d_{j}, 1 / j+\right.$ d_{j}] which is contained in $\gamma(1 / j)$ for $j=1,2, \ldots, m$. These can also be chosen so that $1 / j+d_{j}<1 /(j-1)-d_{j-1}$ for $j=2,3, \ldots, m$ and $0<1 / m-d_{m}$.
Tag $\left[1 / j-d_{j}, 1 / j+d_{j}\right]$ with $1 / j$ for $2 \leqslant j<m$. Tag [$\left.1-d_{1}, 1\right]$ with 1 . The rest of $[0,1]$ is $\left[0,1 / m-d_{m}\right]$ and each of the intervals $\left[1 / j+d_{j}, 1 /(j-1)-d_{j-1}\right]$ for $2 \leqslant j \leqslant m$. Tag the former with 0 and the latter with any of its points, say $1 / j+d_{j}$. Now we have a division of $[0,1]$ with $2 m$ intervals tagged in such a way as to be γ-fine.
2. (a) Let $\mathscr{D} \in R_{\delta}$ and let $z J \in \mathscr{D}$. Since J has length less than δ it is contained in any open interval of length 2δ centered on a point of J. Thus $J \subseteq(z-\delta, z+\delta)$. In consequence $\mathbb{D} \in G R_{8}$.

When $\mathscr{T} \in G R_{\delta}$ and $z J \in \mathscr{D}, J \subseteq(z-\delta, z+\delta)$. Since the length of $(z-\delta, z+\delta)$ is 2δ and the endpoints of J are between $z-\delta$ and $z+\delta, L(J)<2 \delta$. Consequently D $\mathcal{A} \in R_{28}$.
(b) Suppose the Riemann integral of f on $[a, b]$ exists. Choose δ so that $\left|\int_{a}^{b} f-f L(\mathcal{D})\right|<\epsilon$ when $L(J)<\delta$ for all
$z J$ in \mathscr{D}. That is, the inequality holds for all \mathscr{D} in R_{δ}. Let $\gamma(z)=(z-\delta / 2, z+\delta / 2)$ for all z in $[a, b]$. Then the set of all γ-fine \mathscr{D} is $G R_{\delta / 2}$. Since $G R_{\delta / 2} \subseteq R_{\delta}$, the generalized Riemann integral of f exists and is the same as its Riemann integral.

Now let f be a generalized Riemann integrable function with the added property that $\left|\int_{a}^{b} f-f L(\mathscr{D})\right|<\epsilon$ for all \mathscr{D} in $G R_{\delta}$ for some positive δ. Since $R_{\delta} \subseteq G R_{\delta}$ the Riemann integral of f also exists.

Now we have characterized the Riemann integrable functions among the generalized Riemann integrable functions as those for which there is a gauge $\gamma(z)=(z-$ $\delta, z+\delta$) with constant δ such that $\left.\mid \int_{a}^{b} f-f L(9)\right) \mid<\epsilon$ for all γ-fine D.
3. Let $f(x)=0$ when x is irrational. Let p / q be a fraction in lowest terms. Set $f(p / q)=q$. Since the rationals are countable this function is integrable on any interval $[a, b]$ and its integral is zero, according to Example 4, p. 19. Also f is unbounded on every interval $[c, d]$ for the following reasons. Let M be given. Select a prime number q such that $q>M$ and $2 / q<d-c$. There is an integer k such that $k / q \leqslant c<(k+1) / q$. Then $(k+2) / q<d$. The prime q divides at most one of $k+1$ and $k+2$. Thus $f((k+1) / q)=q$ or $f((k+2) / q)=q$.
4. There are elements a and b in $\overline{\mathbf{R}}$ such that I is one of $(a, b),[a, b),(a, b]$, and $[a, b]$. Fix d in (a, b). There is a function f on I such that F and G are primitives of f on I, hence on any closed subinterval of I. For any x in I such that $x<d, \int_{x}^{d} f=F(d)-F(x)$ and $\int_{x}^{d} f=G(d)-G(x)$. Thus $F(x)=G(x)+K$ where $K=F(d)-G(d)$ when $x \in I$ with $x<d$. When $x \in I$ and $d<x, \int_{d}^{x} f=F(x)-$ $F(d)=G(x)-G(d)$. Again $F(x)=G(x)+K$. Trivially $F(d)=G(d)+K$. Thus $F(x)=G(x)+K$ for all x in I.
5. There is a gauge γ on $[a, b]$ such that $\left|\int_{a}^{b} f-f L(\mathscr{D})\right|$ $<\epsilon$ when \mathscr{D} is a γ-fine division of $[a, b]$. Let $s \in(a, b)$.

Since f is also integrable on $[s, b]$, there is a gauge γ_{s} such that $\left|\int_{s}^{b} f-f L(\mathcal{E})\right|<\epsilon$ when \mathcal{E} is a γ_{s}-fine division of [$s, b]$. It is possible to choose γ_{s} so that $\gamma_{s}(z) \subseteq \gamma(z)$, too. Choose c so that $c \in \gamma(a)$ and $|f(a)| L([a, c])<\epsilon$. Let $s \in(a, c)$. Let \mathcal{E} be a γ_{s}-fine division of $[s, b]$. Let $\mathscr{D}=\{a[a, s]\} \cup \mathcal{E}$. Then \mathscr{D} is a γ-fine division of $[a, b]$. Now

$$
\begin{gathered}
\left|\int_{a}^{b} f-\int_{s}^{b} f\right| \leqslant \\
+\left|\int_{a}^{b} f-f L(\mathscr{D})\right|+\left|f L(\mathcal{E})-\int_{s}^{b} f\right| \\
+|f(a) L([a, s])| .
\end{gathered}
$$

Each term on the right is less than c. Hence $\lim _{s \rightarrow a} \int_{s}^{b} f=\int_{a}^{b} f$.
6. We know that $\int_{0}^{\infty} f$ exists if and only if $\lim _{t \rightarrow \infty} \int_{0}^{t} f$ exists. Also $\int_{0}^{\infty} f=\lim _{t \rightarrow \infty} \int_{0}^{t} f$. Using a primitive of f on $[0, t]$ we get $\int_{0}^{t} f=\sum_{k=1}^{m} a_{k}+(t-m) a_{m+1}$ where $m \leqslant t$ $<m+1$. When $\int_{0}^{\infty} f$ exists we specialize t to integer values and get $\int_{0}^{\infty} f=\lim _{m \rightarrow \infty} \int_{0}^{m} f=\sum_{k=1}^{\infty} a_{k}$. Conversely, when the series converges, $\lim _{m \rightarrow \infty} a_{m+1}=0$. Thus $\lim _{t \rightarrow \infty} \int_{0}^{t} f$ $=\lim _{m \rightarrow \infty} \sum_{k=1}^{m} a_{k}=\sum_{k=1}^{\infty} a_{k}$.
7. (a) This is the scale:

(b) Clearly h is strictly increasing and maps $[-\infty, \infty]$ onto $[-1,1]$. Given x and y in $\overline{\mathbf{R}}^{p}$ with $x \neq y$, there is some coordinate where they differ, say $x_{i} \neq y_{i}$. Then $h\left(x_{i}\right) \neq h\left(y_{i}\right)$ so that $H(x) \neq H(y)$. We have shown H is one-to-one. To show that it is onto, take y such that $-1 \leqslant y_{i} \leqslant 1$ for $1 \leqslant i \leqslant p$. There is x_{i} in $\overline{\mathbf{R}}$ such that $h\left(x_{i}\right)=y_{i}$. Hence H maps the point x with these components x_{i} onto \boldsymbol{y}.

Since h is increasing it maps $[u, v]$ onto $[h(u), h(v)]$. Consequently H maps $\left[u_{1}, v_{1}\right] \times \cdots \times\left[u_{p}, v_{p}\right]$ onto the Cartesian product of the intervals $\left[h\left(u_{i}\right), h\left(v_{i}\right)\right]$. The same is true of intervals other than closed intervals.
(c) Draw a square. Put on its edges the scale shown in part (a).

Chapter 2

1. Fix γ_{1} and γ_{2} so that $\left|f M\left({ }^{(2)}\right)-\int_{I} f\right|<\epsilon$ when \mathscr{D} is γ_{1}-fine and $\left|g M(\mathscr{D})-\int_{1} g\right|<\epsilon$ when \mathscr{D} is γ_{2}-fine. Let $\gamma(z) \subseteq \gamma_{1}(z) \cap \gamma_{2}(z)$ for all z in $[a, b]$. Then \mathscr{D} is γ_{1}-fine and γ_{2}-fine whenever it is γ-fine. Thus

$$
\begin{array}{r}
\left|(f+g) M(\mathscr{D})-\int_{I} f-\int_{I} g\right| \\
\leqslant\left|f M(\mathscr{D})-\int_{I} f\right|+\left|g M(\mathscr{P})-\int_{I} g\right|<2 \epsilon
\end{array}
$$

when \mathscr{D} is γ-fine since $(f+g) M(\mathscr{D})=f M(\mathscr{D})+g M(\mathscr{D})$. This shows that $f+g$ is integrable and that $\int_{I} f+\int_{I} g$ is its integral.

Since $(c f) M(D)=c(f M(D))$ we also have

$$
\left|(c f) M(\mathscr{D})-c \int_{I} f\right| \leqslant|c|\left|f M(\mathscr{D})-\int_{I} f\right| \leqslant|c| \epsilon
$$

when \mathscr{T} is γ-fine. Thus $c \int_{I} f$ is the integral of $c f$.
A standard induction argument shows that $\sum_{k=1}^{n} c_{k} f_{k}$ is integrable when each f_{k} is integrable and that $\sum_{k=1}^{n} c_{k} f_{1} f_{k}$ is its integral.
2. Let γ be a gauge on I such that $\left|\int_{I} f-f M(9)\right|<\epsilon$ and $\left|\int_{I} g-g M(\mathscr{D})\right|<\epsilon$ when \mathscr{D} is γ-fine. Since g is real valued, $g M(\mathscr{D})<\int_{1} g+\epsilon$. Also $|f M(\mathscr{D})| \leqslant g M(\mathscr{D})$ for all
T) since $|f|<g$ and M takes nonnegative values. Thus

$$
\begin{aligned}
\left|\int_{I} f\right| & \leqslant|f M(\mathfrak{D})|+\left|\int_{I} f-f M(\mathfrak{D})\right| \\
& \leqslant g M(\mathfrak{D})+\epsilon<\int_{I} g+2 \epsilon .
\end{aligned}
$$

Since ϵ is arbitrary, $\left|\int_{I} f\right|<\int_{I} g$, as claimed.
3. By hypothesis, for each whole number n there is a gauge γ_{n} such that $|f M(\mathscr{D})-f M(\mathcal{E})|<1 / n$ when \mathscr{D} and \mathcal{E} are γ_{n}-fine divisions of I. We may also suppose $\gamma_{j}(z) \subsetneq \gamma_{i}(z)$ when $i<j$. (Replace $\gamma_{n}(z)$ by $\gamma_{1}(z) \cap$ $\gamma_{2}(z) \cap \cdots \cap \gamma_{n}(z)$.) For each n fix a γ_{n}-fine division \mathscr{D}_{n}.
Consider the sequence of elements $f M\left(\mathscr{D}_{n}\right)$ in \mathbf{R}^{q}. Let's show that this is a Cauchy sequence. Suppose $i<j$. Then \mathscr{D}_{j} is not only γ_{j}-fine it is also γ_{i} fine since γ_{j} is stricter than γ_{i}. Hence

$$
\left|f M\left(\mathscr{T}_{j}\right)-f M\left(\mathscr{T}_{i}\right)\right|<1 / i .
$$

It follows easily that $\left(f M\left(\bigoplus_{n}\right)\right)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbf{R}^{q}. Consequently it converges to a limit A in \mathbf{R}^{q}.
To show that A is the integral of f, fix N so that $1 / N<\epsilon / 2$ and $\left|A-f M\left(\mathcal{D}_{N}\right)\right|<\epsilon / 2$. Let D be γ_{N}-fine. Then

$$
\begin{aligned}
|f M(\mathscr{D})-A| & \leqslant\left|f M(\mathscr{D})-f M\left(\mathscr{D}_{N}\right)\right|+\left|f M\left(\mathscr{D}_{N}\right)-A\right| \\
& <1 / N+\epsilon / 2<\epsilon .
\end{aligned}
$$

Thus $A=\int_{l} f$.
4. The techniques needed for the solution of this exercise anticipate the discussion on p. 75. There it is shown that \mathfrak{E} is a subset of a division \mathfrak{D} of I. Let $\mathscr{F}=\mathscr{D}-\mathscr{E}$. Then $\nu(\mathcal{E})+\nu(\mathscr{F})=\nu(\mathscr{D})$. Since $0<\nu(J)$ for all $J, 0<\nu(\mathscr{F})$. Moreover $\nu(\mathscr{D})=\nu(I)$ since ν is finitely additive. Consequently $\nu(\mathcal{E}) \leqslant \nu(I)$.
5. Let $E_{t}=\{x \in[a, b]: \sigma(x)=t\}$. Then $E_{t} \subseteq C$ when $t=\infty$ and when $t=-\infty$. When t is finite we need to show that $E_{t}-C$ is countable. Let $x \in E_{t}-C$. Then $\sigma^{\prime}(x) \neq 0$, consequently there is δ_{x} such that $\sigma(y) \neq \sigma(x)$ when $0<|y-x|<\delta_{x}$. In other words, the set $E_{t}-C$ is made up of isolated points. It must be countable. To see this, let $F_{n}=\left\{x \in[-n, n]: \delta_{x}>1 / n\right\}$. Then $E_{t}-C=$ $\bigcup_{n=1}^{\infty} F_{n}$. It suffices to show that each F_{n} is finite. Form a division of $[-n, n$] into subintervals of length $1 / n$. Each subinterval contains at most one point of F_{n}. Thus F_{n} is finite.
6. There are gauges γ_{1} and γ_{2} on [a, c] and $[d, b]$ such that $\left|\int_{a}^{c} f-f L\left(\mathscr{D}_{1}\right)\right|<\epsilon / 2$ when \mathscr{D}_{1} is a γ_{1}-fine division of [a,c] and $\left|\int_{d}^{b} f-f L\left(\mathscr{D}_{2}\right)\right|<\epsilon / 2$ when \mathscr{D}_{2} is a γ_{2}-fine division of $[d, b]$. We may also suppose $\gamma_{1}(z) \subseteq \gamma(z)$ for all z in $[a, c]$ and $\gamma_{2}(z) \subseteq \gamma(z)$ for all z in $[d, b]$. Fix \mathscr{D}_{1} and \mathscr{D}_{2}. Let \mathscr{E} be a γ-fine division of $[c, d]$. Set $\mathscr{D}=\mathscr{D}_{1} \cup \mathscr{E} \cup \mathscr{D}_{2}$. Then \mathscr{D} is a γ-fine division of $[a, b]$. Consequently,

$$
\begin{aligned}
\left|\int_{c}^{d} f-f L(\delta)\right| \leqslant & \left|\int_{a}^{b} f-f L(\mathscr{D})\right|+\left|f L\left(\mathscr{D}_{1}\right)-\int_{a}^{c} f\right| \\
& +\left|f L\left(\mathscr{D}_{2}\right)-\int_{d}^{b} f\right|
\end{aligned}
$$

This uses the finite additivity of the integral. Now these terms are less than $\epsilon, \epsilon / 2$, and $\epsilon / 2$. Hence the conclusion follows.
(If $a=c$ or $b=d$, some terms become zero but otherwise the argument goes the same.)

Note: A sharpening of the argument above shows that $\left|\int_{c}^{d} f-f L(\mathcal{E})\right| \leqslant \epsilon$. This latter inequality is a special case of Henstock's lemma. (See p. 74.)
7. (a) When $f \geqslant 0$ the function $s \rightarrow \int_{s}^{b} f$ is decreasing
on the interval (a, b) and nonnegative. Such a function is bounded above if and only if $\lim _{s \rightarrow a} a_{s}^{b} f$ exists. Existence of this limit is exactly the criterion for existence of $\int_{a}^{b} f$.
(b) The function $F: s \rightarrow \int_{s}^{b} f$ has a limit at a provided the Cauchy criterion is satisfied. That is, it suffices to find c such that $|F(t)-F(s)|<\epsilon$ when $a<s<t<c$. Since $\int_{a}^{b} g$ exists, $\lim _{s \rightarrow a} \int_{s}^{b} g$ does exist. Hence there is c such that $\left|\int_{s}^{b} g-\int_{t}^{b} g\right|<\epsilon$ when $a<s<t<c$. But now

$$
|F(t)-F(s)|=\left|\int_{s}^{t} f\right| \leqslant \int_{s}^{t} g=\int_{s}^{b} g-\int_{t}^{b} g<\epsilon .
$$

Chapter 3

1. Since $\lim _{t \rightarrow \infty} \int_{1}^{t} 1 / \sqrt{x} d x=\infty$, we know that $\int_{1}^{\infty} 1 / \sqrt{x} d x$ does not exist. Set $f_{n}(x)=1 / \sqrt{x}$ when $1 \leqslant x \leqslant n$ and $f_{n}(x)=0$ when $n<x$. Then f_{n} converges uniformly to $1 / \sqrt{x}$ on $[1, \infty)$.
2. The function f is integrable on $[a, b]$. Set $F(c)=\lim _{n \rightarrow \infty} F_{n}(c)$ and $F(x)=F(c)+\int_{c}^{x} f$ elsewhere in $[a, b]$. (We are using the oriented integral here.)

We are going to get an inequality from which two separate deductions can be made. By hypothesis there is $\boldsymbol{n}_{\epsilon}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all x in $[a, b]$ and all $n \geqslant n_{\epsilon}$. Let u and v be in $[a, b]$. Then

$$
\begin{aligned}
\left|F_{n}(v)-F_{n}(u)-(F(v)-F(u))\right| & =\left|\int_{u}^{v}\left(f_{n}-f\right)\right| \\
& \leqslant \epsilon|v-u|
\end{aligned}
$$

when $n \geqslant n_{c}$.
The first conclusion is uniform convergence of F_{n} to F. To get it let $u=c$. Then one more application of the
triangle inequality yields

$$
\left|F_{n}(v)-F(v)\right| \leqslant\left|F_{n}(c)-F(c)\right|+\epsilon(b-a) .
$$

Uniform convergence follows easily.
The next conclusion is uniform convergence of difference quotients. Let $u=x$ and $v=x+t$ with $t \neq 0$. Divide by $|t|$. Then

$$
\left|\frac{F_{n}(x+t)-F_{n}(x)}{t}-\frac{F(x+t)-F(x)}{t}\right| \leqslant \epsilon
$$

for all x and t such that x and $x+t$ are in $[a, b]$ and all $n \geqslant n_{e}$.

Choose x so that $F_{n}^{\prime}(x)=f_{n}(x)$ for every integer n. Select δ_{ε} such that

$$
\left|\frac{F_{n}(x+t)-F_{n}(x)}{t}-f_{n}(x)\right|<\epsilon
$$

when $n=n_{\epsilon}$ and $|t|<\delta_{\epsilon}$. Now

$$
\begin{aligned}
& \left|\frac{F(x+t)-F(x)}{t}-f(x)\right| \\
& \quad<\left|\frac{F(x+t)-F(x)}{t}-\frac{F_{n}(x+t)-F_{n}(x)}{t}\right| \\
& \quad+\left|\frac{F_{n}(x+t)-F_{n}(x)}{t}-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right| .
\end{aligned}
$$

Each term is less than ϵ when $n \geqslant n_{\epsilon}$ and $|t|<\delta_{\epsilon}$. Consequently $F^{\prime}(x)=f(x)$.

Let C_{n} be the set of values of x for which we cannot claim that $F_{n}^{\prime}(x)=f_{n}(x)$. Then C_{n} is countable and $\bigcup_{n=1}^{\infty} C_{n}$ is also countable. Outside this set we know that
$F^{\prime}=f$. Since F is continuous, it is a primitive of f on $[a, b]$.
(This argument can be greatly abbreviated by use of the iterated limits theorem given in Section S3.9.)
3. It is enough to consider increasing functions. We may apply the proposition proved in the preceding exercise. Thus it is our goal to define functions f_{n} which converge uniformly to f and have primitives. Step functions are the right choice. Since f is increasing, for any number K in $[f(a), f(b)]$ there is at least one number c in $[a, b]$ such that $f(x) \leqslant K$ when $x \leqslant c$ and $K \leqslant f(x)$ when $c<x$. Let the integer n be given and set $d_{n}=(f(b)-f(a)) / n$. For $i=1,2, \ldots, n-1$, let $K_{i}=$ $f(a)+i d_{n}$. Choose a corresponding c_{i}. Set $c_{0}=a$ and $c_{n}=b$. Define f_{n} so that $f_{n}\left(c_{i}\right)=f\left(c_{i}\right)$ for $i=0, \ldots, n$ and $f_{n}(x)=K_{i}$ when $c_{i-1}<x<c_{i}$. It is immediate that $\left|f(x)-f_{n}(x)\right|<d_{n}$ for all x in $[a, b]$. Consequently f_{n} converges uniformly to f on $[a, b]$.

Chapter 4

1. Recall that E is $g f M$-null whenever E is $f M$-null. Now apply this with the constant function with value 1 in place of f and f in place of g. Thus E is $f M$-null when E is M-null. By definition this means that $|f| M(\mathcal{E})<\epsilon$ for every γ-fine partial division \mathcal{E} whose tags are in E. When \mathscr{D} is a division of I and \mathcal{E} is the subset of \mathscr{D} whose tags are in $E,|f| M(\mathscr{D})=|f| M(\mathcal{E})$ since f vanishes outside E. Thus $\int_{I}|f|=0$.
2. There is a gauge γ on I such that $|f| M(\mathscr{D})<\epsilon$ when \mathscr{D} is a γ-fine division of I. Let $E=\{x \in I: f(x)$ $\neq 0\}$. Let \mathcal{E} be a γ-fine partial division of I whose tags are in E. There is a γ-fine division \mathscr{D} such that $\mathscr{E} \subseteq \mathscr{D}$. Then
$|f| M(\mathcal{E})=|f| M($ D $)<\epsilon$. Thus E is $|f| M$-null. Let $g(x)=1 /|f(x)|$ when $x \in E$. Then E is $g|f| M$-null, i.e., M-null.
3. Let M^{\prime} and M be the interval measures in \mathbf{R}^{p-1} and $\mathbf{R}^{\boldsymbol{P}}$, respectively. For a given ϵ we must define γ on E so that $M(\mathcal{E})<\epsilon$ when \mathcal{E} is a γ-fine partial division with tags in E.

Using the continuity of f choose $\gamma_{1}(z)$ so that $|f(x)-f(z)|<\epsilon^{\prime}$ when $x \in I \cap \gamma_{1}(z)$. Fix a γ_{1}-fine division \mathscr{D}_{1} of I. For each $z J$ in \mathscr{D}_{1} let H_{J} be the interior of J, i.e., the open interval obtained by peeling the faces from J. Let B be the union of all faces of all J of \mathscr{T}_{1}. Then $B \times \mathbf{R}$ is an M-null subset of \mathbf{R}^{p} since it is a finite union of degenerate intervals. Thus there is γ defined on $B \times \mathbf{R}$ such that $M(\mathcal{E})<\epsilon / 2$ when \mathfrak{E} is γ-fine with tags in $B \times \mathbf{R}$.

When $x \in I-B$ there is a unique J such that $x \in H_{J}$. Set $\gamma(x, f(x))=H_{J} \times\left(f(z)-\epsilon^{\prime}, f(z)+\epsilon^{\prime}\right)$. Let \mathcal{E} be γ-fine with tags in E. Separate \mathcal{E} into subsets \mathcal{E}_{1} and \mathscr{E}_{2} having tags in $B \times \mathbf{R}$ and $(I-B) \times \mathbf{R}$. Then $M\left(\mathscr{E}_{1}\right)$ $<\epsilon / 2$ and $M\left(\mathscr{E}_{2}\right) \leqslant \sum_{J} M^{\prime}(J) 2 \epsilon^{\prime} \leqslant 2 \epsilon^{\prime} M^{\prime}(I)$. (The first inequality on $M\left(\mathscr{E}_{2}\right)$ results from grouping together all terms associated with a single J of \mathscr{D}_{1}.) The choice $\epsilon^{\prime}=\epsilon /\left(4 M^{\prime}(I)\right)$ gives $M(\mathcal{E})<\epsilon$, as desired.
4. According to Example 5, p. 86, the functions $g \wedge\left(i^{-1} f_{n}\right)$ are integrable. There is a bound A for $\int_{1} f_{n}$. Since $g \wedge\left(i^{-1} f_{n}\right) \leqslant i^{-1} f_{n}$ for all $n, \int_{1}\left(g \wedge\left(i^{-1} f_{n}\right)\right) \leqslant i^{-1} A$. Since $f_{n} \leqslant f_{n+1}$ the sequence $g \wedge\left(i^{-1} f_{n}\right)$ increases for fixed i. Thus $\int_{I} h_{i}=\lim _{n \rightarrow \infty} \int_{I}\left(g \wedge\left(i^{-1} f_{n}\right)\right) \leqslant i^{-1} A$, too. To see that $\lim _{i \rightarrow \infty} h_{i}=h$, first let $x \in E$. Then $g \wedge\left(i^{-1} h_{n}\right)$ has value 1 at x for all large n. Hence $h_{i}(x)=1$ and $\lim _{i \rightarrow \infty} h_{i}(x)=1$. When $x \in I-E,\left(g \wedge\left(i^{-1} f_{n}\right)\right)(x)$ $\leqslant i^{-1} f(x)$, hence $h_{i}(x) \leqslant i^{-1} f(x)$. Consequently, $\lim _{i \rightarrow \infty} h_{i}(x)=0$. A second use of monotone convergence gives $\int_{I} h=\lim _{i \rightarrow \infty} \int_{I} h_{i}=0$.
5. The essentials of the solution can be conveyed by an example in \mathbf{N}. Consider the sequence $1,-1,1,1 / 2$, $-1 / 2,1 / 2,1 / 3,-1 / 3,1 / 3, \ldots$ This is our function $f: \mathbf{N} \rightarrow \mathbf{R}$. Note that the terms go in groups of three. Let's replace every third member by zero. That means integrate f over $E=\{1,2,4,5,7,8, \ldots\}$. It is easy to see that $\int_{E} f$ exists. Next replace the first member of each group by zero; i.e., integrate f over $F=\{2,3,5,6,8,9, \ldots\}$. Integration over $E \cap F$ is the same as summing the middle terms of each group. These terms are negatives of terms of the harmonic series. Thus $\int_{E \cap F} f$ does not exist. Neither does $\int_{E U F} f$ for much the same reason.
6. For each positive integer n, partition I into a finite collection \mathscr{F}_{n} of pairwise disjoint intervals K such that the diameter of K is no more than $1 / n$. Also make the choices so that each interval of \mathscr{F}_{n+1} is contained in an interval of \mathscr{F}_{n}; i.e., \mathscr{F}_{n+1} is a refinement of \mathscr{F}_{n}.

Define f_{n} from \mathscr{F}_{n} as follows. For each x in I, there is just one interval K of \mathscr{F}_{n} to which x belongs. Let $f_{n}(x)=\operatorname{lub}\{f(x): x \in K\}$. This is meaningful everywhere since f is bounded above. (Recall that f has a maximum on E and f is constant on $I-E$.)

The sequence $\left(f_{n}\right)_{n=1}^{\infty}$ decreases since \mathscr{F}_{n+1} is a refinement of \mathscr{F}_{n}.

Now let $x \in I-E$. There is an open interval $\gamma(x)$ which does not intersect E since E is closed. Every interval of sufficiently small diameter containing x is a subset of $\gamma(x)$. Since f vanishes on $\gamma(x)$ so does $f_{n}(x)=0$ for sufficiently large n.

When $x \in E$ there is an open interval $\gamma(x)$ such that $|f(y)-f(x)|<\epsilon$ for all $y \in E \cap \gamma(x)$. There may be points in $\gamma(x)$ which are not in E. But f is zero at those points. Since $0 \leqslant f(x), f(y) \leqslant f(x)+\epsilon$ for all y in $\gamma(x)$. For large enough n the interval of \mathscr{F}_{n} which contains x is a subset of $\gamma(x)$. Thus $f_{n}(x) \leqslant f(x)+\epsilon$ for all sufficiently
large n. The definition of f_{n} also insures that $f(x) \leqslant f_{n}(x)$. Hence $f(x) \leqslant f_{n}(x) \leqslant f(x)+\epsilon$ for sufficiently large n.

We have shown that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for all $x \in I$, as required.
7. Set $E_{1}=H_{1}$ and $E_{n}=H_{n}-H_{n-1}$ for $n \geqslant 2$. Note that $H_{n-1} \subseteq H_{n}$. Thus f is integrable on E_{n}. Since f is also bounded on each E_{n}, it is absolutely integrable on E_{n}. Moreover $\int_{E_{n}}|f| \leqslant b_{n}\left(M\left(H_{n}\right)-M\left(H_{n-1}\right)\right)$ for $n \geqslant 2$. But $M\left(H_{n}\right)-M\left(H_{n-1}\right)=(2 n)^{p}-(2(n-1))^{p} \leqslant p 2^{P} n^{p-1}$. Thus $\sum_{n=1}^{\infty} \int_{E_{n}}|f|$ is convergent since $\sum_{n=1}^{\infty} b_{n} n^{p-1}$ is assumed convergent. This implies absolute integrability of f.
8. We know that $|f|$ is integrable on E_{n} for all n since $|f| \leqslant g$ and g is integrable on I. By induction f is absolutely integrable on $\bigcup_{i=1}^{n} E_{i}$ for all n since absolute integrability carries over to unions of two sets. Let $F_{1}=E_{1}$ and $F_{n}=\bigcup_{i=1}^{n} E_{i}-\left(\bigcup_{i=1}^{n-1} E_{i}\right)$ when $n \geqslant 2$. Now f is absolutely integrable on each member of the pairwise disjoint sequence $\left(F_{n}\right)_{n=1}^{\infty}$. Moreover $\sum_{i=1}^{n} \int_{F_{n}}|f| \leqslant \int_{I} g$ for all n. Thus $\sum_{n=1}^{\infty} \int_{F_{n}}|f|$ is finite. By the countable additivity proposition f is absolutely integrable on $\bigcup_{n=1}^{\infty} F_{n}$, i.e., on E.
9. The characteristic functions of $\bigcap_{i=1}^{n} E_{i}$ decrease to the characteristic function of $\bigcap_{i=1}^{\infty} E_{i}$. Thus the monotone convergence theorem yields the integrability of the intersection of the sequence.

Now $\bigcup_{i=1}^{n} E_{i}$ are integrable sets whose characteristic functions increase to the characteristic function of the union of the sequence. Since $\mu\left(\bigcup_{i=1}^{n} E_{i}\right) \leqslant \sum_{i=1}^{n} \mu\left(E_{i}\right)$ and $\mu\left(\bigcup_{i=1}^{n} E_{i}\right) \leqslant \mu(F)$ when $\bigcup_{i=1}^{\infty} E_{i}$ is contained in the integrable set F, the monotone convergence theorem implies integrability of $\bigcup_{i=1}^{\infty} E_{i}$ under each of the conditions which have been given.
10. The conclusions in (a) follow from known properties of integrable sets, since the intersection with a
bounded interval J distributes over the other operations. For instance, $(E \cup F) \cap J=(E \cap J) \cup(F \cap J)$. Thus $(E \cup F) \cap J$ is the union of integrable sets and is integrable itself. The others go similarly.

Measurability of $\bigcap_{n=1}^{\infty} E_{n}$ and $\bigcup_{n=1}^{\infty} E_{n}$ follow similarly. The inequality is trivial when the right-hand side equals ∞. When it is finite, every set E_{n} is integrable and we know from the previous exercise that $\bigcup_{n=1}^{\infty} E_{n}$ is integrable. Moreover $\mu\left(\bigcup_{i=1}^{n} E_{i}\right) \leqslant \sum_{i=1}^{n} \mu\left(E_{i}\right) \leqslant \sum_{i=1}^{\infty} \mu\left(E_{i}\right)$ for all n. Monotone convergence tells us that $\mu\left(\cup_{i=1}^{\infty} E_{i}\right)$ $\leqslant \sum_{i=1}^{\infty} \mu\left(E_{i}\right)$.
When the sets are nonoverlapping and $\bigcup_{n=1}^{\infty} E_{n}$ is not integrable the inequality just proved becomes equality. When $\bigcup_{n=1}^{\infty} E_{n}$ is integrable, we are back to countable additivity of integrable sets since every E_{n} must also be integrable.

Chapter 5

1. We prove that (i) implies (ii) implies (iii) implies (iv) implies (i).

Assume (i). Let $G=(-\infty, a]$ and $G^{\prime}=(a, \infty)$. Then $f^{-1}(G)=I-f^{-1}\left(G^{\prime}\right)$. Since $f^{-1}\left(G^{\prime}\right)$ is measurable according to (i) the set $f^{-1}(G)$ is also measurable. This establishes (ii).

Assume (ii). Let $G=(-\infty, a)$ and set $G_{n}=(-\infty, a-$ $1 / n]$. Then $\bigcup_{n=1}^{\infty} G_{n}=G$ and $f^{-1}(G)=\bigcup_{n=1}^{\infty} f^{-1}\left(G_{n}\right)$. By (ii) each $f^{-1}\left(G_{n}\right)$ is measurable. Thus $f^{-1}(G)$ is also measurable and (iii) holds.

Prove (iv) from (iii) like (ii) from (i).
Deduce (i) from (iv) on the model of (iii) from (ii).
Measurability of f obviously implies (i), hence all the others. Assume (i) through (iv). Then $f^{-1}(G)$ is measurable for every unbounded open interval. Since
$(a, b)=(a, \infty)-[b, \infty)$ and $f^{-1}((a, b))=f^{-1}((a, \infty))-$ $f^{-1}\left([b, \infty)\right.$), it follows from (i) and (ii) that $f^{-1}(G)$ is measurable for bounded open intervals, too. Thus f is measurable.
2. In \mathbf{R}^{q} let $J_{n}=[-n, n) \times \cdots \times[-n, n)$. Partition each factor $\left[-n, n\right.$) into $n 2^{n}$ intervals of length $1 / 2^{n-1}$. Let each subinterval be closed on the left and open on the right. Form a partition \mathscr{F}_{n} of J_{n} by taking Cartesian products. (See Fig. 3, p. 144.)

For each $G \in \mathscr{F}_{n}$ the set $I_{n} \cap f^{-1}(G)$ is a bounded measurable subset of I. Let K be the closed interval having the same faces as G. Then K has on its boundary a unique point y which is nearest to the origin. Set $f_{n}(x)=y$ for all x in $I_{n} \cap f^{-1}(G)$. Do this for all G in \mathscr{F}_{n}. This defines f_{n} on $I_{n} \cap f^{-1}\left(J_{n}\right)$. Set $f_{n}(x)=0$ elsewhere. Then $\left|f_{n}(x)\right| \leqslant|f(x)|$ for all x in I. Since \mathscr{F}_{n+1} is a refinement of \mathscr{F}_{n} and $I_{n} \subseteq I_{n+1},\left|f_{n}(x)\right| \leqslant\left|f_{n+1}(x)\right|$ for all x. Moreover this construction produces a nonnegative function f_{n} when f is nonnegative.

The convergence of $f_{n}(x)$ to $f(x)$ is proved as follows. Let $x \in I \cap \mathbf{R}^{P}$. There is n_{x} such that $x \in I_{n}$ and $f(x) \in J_{n}$ when $n \geqslant n_{x}$. Then $f(x)$ is in some G of \mathscr{F}_{n}. Since $f_{n}(x)$ belongs to the closed interval having the same faces as G, $\left|f(x)-f_{n}(x)\right| \leqslant \sqrt{q} / 2^{n-1}$. Consequently, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
3. Let $E=\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} f_{k}^{-1}\left(G_{n}\right)$. Let $x \in E$. Then $x \in \bigcap_{k=m}^{\infty} f_{k}^{-1}\left(G_{n}\right)$ for some m and n. Consequently, $f_{k}(x)>a+1 / n$ when $k \geqslant m$. Thus $\lim _{k \rightarrow \infty} f_{k}(x) \geqslant$ $a+1 / n$. From this we see that $x \in f^{-1}(G)$. Thus $E \subseteq$ $f^{-1}(G)$.

Conversely, let $x \in f^{-1}(G)$. Fix n so that $a+1 / n<$ $f(x)$. There is m such that $f_{k}(x)>a+1 / n$ when $k \geqslant m$. Then $x \in f_{k}^{-1}(G)$ when $k \geqslant m$; i.e., $x \in \bigcap_{k=m}^{\infty} f_{k}^{-1}\left(G_{n}\right)$. Consequently, $x \in E$. This completes the proof that $f^{-1}(G) \subseteq E$. Thus the sets are equal.
4. If one of f and g is a null function the same is true of $f g$. Then both sides of the inequality are zero.

Suppose neither f nor g is a null function. Then $\int_{I}|f|^{s}>0$ and $\int_{l}|g|^{t}>0$. We can choose a positive constant c so that $\int_{l}|c f|^{3}=1$. In fact we need only have $c^{-s}=\int_{I}|f|^{s}$ or $c^{-1}=\left(\int_{I} \mid f f^{s}\right)^{1 / s}$. Similarly, $\int_{I}|k g|^{\prime}=1$ when $k^{-1}=\left(\int_{I}|g|^{2}\right)^{1 / t}$. Integration on both sides of

$$
|(c f)(k g)| \leqslant|c f|^{s} / s+|k g|^{t} / t
$$

yields

$$
c k \int_{I}|f g| \leqslant 1 / s+1 / t=1
$$

Hence $\int_{I}|f g| \leqslant c^{-1} k^{-1}$, as desired.

Chapter 6

1. Some notation is needed. Suppose $I \subseteq \overline{\mathbf{R}}^{p}$. Let the r-fold integration be accomplished by expressing $\overline{\mathbf{R}}^{p}$ as $P_{1} \times P_{2} \times \cdots \times P_{r}$ with $r \leqslant p$. Write the intervals as products like this: $I=I_{1} \times I_{2} \times \cdots \times I_{r}$ where $I_{j} \subseteq P_{j}$ for $1 \leqslant j \leqslant r$.

We may assume $I=G \cup H$. Since G and H do not overlap, there is an integer k such that $I_{j}=G_{j}=H_{j}$ when $j \neq k$ and $G_{k} \cup H_{k}=I_{k}$ with G_{k} and H_{k} nonoverlapping.

For convenience denote iterated integrals as follows. When $i<r$ let the result of the first i integrations over an interval J be

$$
\begin{aligned}
& \nu\left(J ; x_{i+1}, \ldots, x_{r}\right) \\
& \quad=\int_{J_{i}} \cdots \int_{J_{2}} \int_{J_{1}} f\left(x_{1}, x_{2}, \ldots, x_{r}\right) d x_{1} d x_{2} \cdots d x_{i} .
\end{aligned}
$$

Let $\nu(J)$ be the result of the r-fold integration.

The equalities $I_{j}=G_{j}=H_{j}$ when $j<k$ imply

$$
\begin{aligned}
\nu\left(I ; x_{i+1}, \ldots, x_{r}\right) & =\nu\left(G ; x_{i+1}, \ldots, x_{r}\right) \\
& =\nu\left(H ; x_{i+1}, \ldots, x_{r}\right)
\end{aligned}
$$

when $i<k$. The additivity of integrals allows us to replace the second equality by summation when $i=k$. The result is either

$$
\begin{aligned}
\nu\left(I ; x_{k+1}, \ldots, x_{r}\right)= & \nu\left(G ; x_{k+1}, \ldots, x_{r}\right) \\
& +\nu\left(H ; x_{k+1}, \ldots, x_{r}\right)
\end{aligned}
$$

when $k<r$ or, of course, $\nu(I)=\nu(G)+\nu(H)$ if it happens that $k=r$. When $k<r$ the linearity of integration applies in the last $r-k$ integrations to yield the desired final conclusion that $\nu(I)=\nu(G)+\nu(H)$. The equalities $I_{j}=G_{j}=H_{j}$ for $j=k+1, \ldots, r$ must be used in these last $r-k$ integrations.
2. Since U can be expressed as a countable union of bounded sets, it is enough to give the solution for a bounded interval I. It is enough to show that there is a gauge γ on U such that

$$
|f(z) M(J)-\phi(J)|<\epsilon M(J)
$$

when $z \in J$ and $J \subseteq \gamma(z)$.
When $z \in U$, the continuity of f at z implies that there is $\gamma(z)$ such that $|f(x)-f(z)|<\epsilon$ when $x \in I \cap \gamma(z)$. Let $J \subseteq I \cap \gamma(z)$. On J consider the constant function g such that $g(x)=f(z)$. The iterated integral of g over J has the value $f(z) M(J)$. Then $\phi(J)-f(z) M(J)$ is the iterated integral of $f-g$. Since $|f(x)-g(x)|<\epsilon$ on J, repeated application of integral inequalities yields $\mid \phi(J)-f(z)$ - $M(J) \mid<\epsilon M(J)$.
3. The first step is to snow that the extension of f which is zero outside E has an iterated integral over any
bounded interval. Actually, it is enough to work within $I=[a, b] \times[c, d]$ where $c \leqslant g(x) \leqslant h(x) \leqslant d$ for all x in $[a, b]$. The order of integration will always be the same as this:

$$
\phi(I)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

The inner integral exists because, for fixed $x, f(x, y)$ vanishes on $[c, g(x)$) and $(h(x), d]$ and is continuous when restricted to $[g(x), h(x)]$.

Let $[r, s] \subseteq[c, d]$. The outer integral exists if we show $\int_{r}^{s} f(x, y) d y$ is a continuous function of x. Thus it is appropriate to consider $\int_{r}^{s} f(x, y) d y-\int_{r}^{s} f(u, y) d y$, i.e., $\int_{r}^{s}[f(x, y)-f(u, y)] d y$. It is important to estimate this integrand.

Let $K_{x}=[r, s] \cap[g(x), h(x)]$ for each x in $[a, b]$. The uniform continuity of f on E implies that $|f(x, y)-f(u, y)|$ $<\epsilon$ when $|x-u|<\delta$ and $y \in K_{x} \cap K_{u}$. Since f is bounded, there is a constant A such that $|f(x, y)-f(u, y)|$ $\leqslant A$ for all x, u, and y. Next note that $f(x, y)-f(u, y)$ $=0$ when y is outside $K_{x} \cup K_{u}$. Finally, note that the total length of the intervals making up $\left(K_{x} \cup K_{y}\right)-\left(K_{x} \cap K_{y}\right)$ is no more than $|g(x)-g(u)|+|h(x)-h(u)|$.

Now suppose $|x-u|<\delta$. The estimates of the preceding paragraph give

$$
\begin{aligned}
& \left|\int_{r}^{s}[f(x, y)-f(u, y)] d y\right| \\
& \quad<\epsilon L\left(K_{x} \cap K_{u}\right)+A(|g(x)-g(u)|+|h(x)-h(u)|) .
\end{aligned}
$$

Since $L\left(K_{x} \cap K_{u}\right) \leqslant d-c$ and g and h are continuous, the desired continuity of the inner integral follows.

Now $\phi(J)$ is meaningful on every J contained in I. Let G and H be the graphs of g and h. Then f is continuous
on $I-(G \cup H)$ and this set is $(f M-\phi)$-null. We know $G \cup H$ is M-null. It is also ϕ-null since $|\phi(J)| \leqslant A M(J)$ for every J. It follows that f is integrable on E and $\int_{E} f=\phi(I)$.

Chapter 7

1. Let A be the \Re-limit of $f \Delta \alpha(\mathscr{P})$. Choose δ so that $|A-f \Delta \alpha(\mathscr{D})|<\epsilon$ when $\|\mathscr{D}\|<\delta$. Fix a division \mathscr{F} with $\|\mathscr{F}\|<\delta$. Let \mathscr{D} be a refinement of \mathscr{G}. Then $\|\mathscr{D}\| \leqslant\|\mathscr{F}\|$ $<\delta$. Hence $|A-f \Delta \alpha(\operatorname{D})|<\epsilon$. Therefore A is also the R-limit of $f \Delta \alpha(\mathscr{D})$.

Now assume A is the Ω-limit. To show that A is the ρ-limit requires the use of a special gauge associated with a division. Fix a division \mathscr{F}_{F} for which $|A-f \Delta \alpha(\mathcal{D})|<\epsilon$ when \mathscr{D} is a refinement of \mathscr{F}. Let $\gamma_{\boldsymbol{g}}$ be defined so that $\gamma_{\mathscr{G}}(z)$ contains no endpoint of \mathfrak{F} distinct from z. Let 9 be $\boldsymbol{\gamma}_{\boldsymbol{G}}$-fine. Then every endpoint of $\mathscr{F}^{\mathscr{F}}$ appears as tag of each interval of \mathscr{D} which contains that endpoint. Form \mathcal{E} from (2) by replacing $z[u, v]$ by $z[u, z]$ and $z[z, v]$ when $u<z<v$. Then \mathscr{E} is a refinement of \mathfrak{F}. Moreover $f \Delta \alpha(\mathscr{D})=f \Delta \alpha(\mathfrak{E})$. Thus $|A-f \Delta \alpha(\mathscr{D})|=|A-f \Delta \alpha(\mathcal{E})|<\epsilon$ because of the choice of $\mathscr{\mathscr { F }}$.
2. It is enough to find γ for which $|f \Delta \alpha(\mathscr{D})-f g \Delta \beta(\mathscr{D})|$ $<\epsilon$ for all γ-fine $\mathscr{\square}$. From this statement and the triangle inequality we can deduce existence of both integrals from existence of either of them.

Let $E_{n}=\{x \in[a, b]: n-1 \leqslant|f(x)|<n\}$. These sets E_{n} cover $[a, b]$ and are pairwise disjoint. Any division \mathscr{D} falls into subsets \mathscr{D}_{n} having tags in E_{n}. Now $\mid f \Delta \alpha\left(\mathscr{D}_{n}\right)-$ $f g \Delta \beta\left(\mathscr{D}_{n}\right)|<n| \Delta \alpha-g \Delta \beta \mid\left(\mathscr{D}_{n}\right)$. Thus it is our goal to define γ so that $\sum_{n} n|\Delta \alpha-g \Delta \beta|\left(\mathcal{D}_{n}\right)<\epsilon$ when \mathscr{D} is γ-fine. Henstock's lemma gets us to our goal.

Begin with gauges γ_{n} on $[a, b]$ so that $\left|\int_{a}^{b} g d \beta-g \Delta \beta(\mathcal{D})\right|$ $<\epsilon /\left(n q 2^{n+1}\right)$ when \mathscr{D} is γ_{n}-fine. When $z \in E_{n}$ set $\gamma(z)=\gamma_{n}(z)$. Then \mathscr{D}_{n} is γ_{n}-fine provided \mathscr{D}^{2} is γ-fine. Thus $|\Delta \alpha-g \Delta \beta|\left(\mathscr{D}_{n}\right) \leqslant 2 q \epsilon /\left(n q 2^{n+1}\right)$ and $\mid f \Delta \alpha\left(\mathscr{D}_{n}\right)-$ $f g \Delta \beta\left(\mathcal{D}_{n}\right) \mid \leqslant \epsilon / 2^{n}$. Summation on n does the rest.
3. The step function f can be expressed as a linear combination of functions of the types considered in Example 3, p. 190, and Example 4, p. 190. The n open intervals give us functions g_{j} such that $g_{j}(x)=1$ when $x \in\left(x_{j-1}, x_{j}\right)$ and $g_{j}(x)=0$ elsewhere. The $n+1$ endpoints give us functions h_{j} such that $h_{j}\left(x_{j}\right)=1$ and $h_{j}(x)=0$ elsewhere. Then $f=\sum_{j=1}^{n} F_{j} g_{j}+\sum_{j=0}^{n} f\left(x_{j}\right) h_{j}$.

Part (a) follows immediately from linearity in the integrand and the results given in Examples 3 and 4.

Part (b) can be done most easily from the definition. When \mathscr{D} has every x_{j} as a tag and at least one endpoint in each interval (x_{j-1}, x_{j}), the value of $\alpha \Delta f\left(\right.$ DI $^{(1)}$) is precisely the expression given in (b). It suffices to define γ so that $\gamma(z)$ contains no x_{j} distinct from z. Then any γ-fine \mathscr{D} has the properties named and the conclusion is immediate.
4. The jumps in f occur on the left-hand side of the integer points. Consequently, from Exercise 3(b), $\int_{0}^{t} \alpha d f$ $=\sum_{j=1}^{n} \alpha\left(x_{j}\right)$ when $n<t<n+1$. Now $\int_{0}^{\infty} \alpha d f$ exists if and only if $\lim _{t \rightarrow \infty} \int_{0}^{h} \alpha d f$ exists. Consequently, the existence of the integral is equivalent to convergence of $\sum_{j=1}^{\infty} \alpha\left(x_{j}\right)$. Moreover $\int_{0}^{\infty} \alpha d f=\sum_{j=1}^{\infty} \alpha\left(x_{j}\right)$.
5. Let α be the primitive F of Example 2, p. 79. Since this function is continuous, it is a regulated function. It was constructed so that it is not a function of bounded variation.

Since α is a primitive of $\alpha^{\prime}, \alpha^{2} / 2$ is also a primitive of $\alpha \alpha^{\prime}$ and $\int_{a}^{b} \alpha \alpha^{\prime}$ exists. It can be converted into $\int_{a}^{b} \alpha d \alpha$.

The failure of $\int_{a}^{b} f d \alpha$ to exist is the same as failure of existence of $\int_{a}^{b} f \alpha^{\prime}$. Clearly, it is desirable that $f(x)$ and
$\alpha^{\prime}(x)$ have the same sign. The sign of $\alpha^{\prime}(x)$ is alternately positive and negative in intervals $\left(c_{0}, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots$, beginning with a positive value in (c_{0}, c_{1}). The value of α^{\prime} on (c_{n-1}, c_{n}) is $a_{n} /\left(c_{n}-c_{n-1}\right)$ where $\left(a_{n}\right)_{n=1}^{\infty}$ is the sequence $1,-1 / 2,1 / 2,-1 / 3,1 / 3, \ldots$ On $\left[c_{n-1}, c_{n}\right.$) let $f(x)=b_{n}$ where $\left(b_{n}\right)_{n=1}^{\infty}$ is the sequence 1 , $-1 / \ln 2,1 / \ln 2,-1 / \ln 3,1 / \ln 3, \ldots$. Then $\sum_{n=1}^{\infty} a_{n} b_{n}$ is divergent. Since $\int_{a}^{c_{n}} f a^{\prime}=\sum_{k=1}^{n} a_{k} b_{k}$, it follows that $\lim _{t \rightarrow b} \int_{a}^{z} f \alpha^{\prime}$ does not exist. Consequently, $\int_{a}^{b} f \alpha^{\prime}$ and $\int_{a}^{b} f d \alpha$ do not exist. Finally, observe that f is regulated. It clearly has one-sided limits at each point in $[a, b)$. Since $\lim _{n \rightarrow \infty} b_{n}=0$ the left-hand limit of f at b is also zero.
6. Let $C=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ include all left-hand discontinuities of α, whether $\phi\left(c_{n}\right) \neq 0$ or not. Then $\sum_{n=1}^{\infty} \phi\left(c_{n}\right)$ is absolutely convergent and there is m such that $\sum_{k=m+1}^{\infty}\left|\phi\left(c_{k}\right)\right|<\epsilon$. (We may assume $a \notin C$.)
When $z=c_{n}$ choose $\gamma(z)$ so that

$$
|\phi(z)-(\alpha(z)-\alpha(u))(f(z)-f(u))|<\epsilon / 2^{n}
$$

for all u such that $u<z$ and $u \in \gamma(z)$.
When $z \notin C$ the function α is left-hand continuous at z. Thus there is $\gamma(z)$ such that

$$
|(\alpha(z)-\alpha(u))(f(z)-f(u))|<\epsilon|f(z)-f(u)|
$$

when $u \leqslant z$ and $u \in \gamma(z)$.
When $z \notin\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ restrict $\gamma(z)$ further so that $\gamma(z)$ contains none of $c_{1}, c_{2}, \ldots, c_{m}$.

Let \mathscr{D} be γ-fine. Break \mathscr{D} into three subsets. Put $z[u, v]$ into \mathscr{E} when $z \notin C$, into $\mathscr{F}_{\mathcal{F}}$ when $z \in C$ and $u<z$, and into \mathcal{G} when $z \in C$ but $u=z$. Let K be the set of all n such that c_{n} is a tag in \mathscr{F}. Then $\{1,2, \ldots, m\} \subseteq K$. Recall that the third restriction on γ implies that each interval of \mathscr{D} which contains $c_{n}, n \leqslant m$, has c_{n} as its tag. Whether \mathscr{D}
contains one or two intervals to which c_{n} belongs, one of them does not have c_{n} as its left endpoint since $a \neq c_{n}$.
The definition of Φ implies that $\Phi(\mathcal{G})=0$. Thus

$$
\begin{aligned}
&\left|\Phi(\mathscr{D})-\sum_{n=1}^{\infty} \phi\left(c_{n}\right)\right| \leqslant\left|\Phi(\mathscr{F})-\sum_{n \in K} \phi\left(c_{n}\right)\right|+|\Phi(\mathcal{E})| \\
&+\left|\sum_{n \notin K} \phi\left(c_{n}\right)\right|
\end{aligned}
$$

For each $n \in K$ there is exactly one $z[u, v]$ of \mathscr{F} with $z=c_{n}$. Thus $\left|\Phi(\mathcal{F})-\sum_{n \in K} \phi\left(c_{n}\right)\right| \leqslant \sum_{n \in K} \epsilon / 2^{n}<\epsilon$. Recall that f is a function of bounded variation. The choice of $\gamma(z)$ when $z \notin C$ allows us to say that $|\Phi(\mathcal{E})| \leqslant \epsilon|\Delta f|(\mathcal{E})$ $\leqslant \epsilon V_{a}^{b} f$. Finally $\left|\sum_{n \notin K} \phi\left(c_{n}\right)\right| \leqslant \sum_{n=m+1}^{\infty}\left|\phi\left(c_{n}\right)\right|<\epsilon$. In summary

$$
\left|\Phi(\mathscr{D})-\sum_{n=1}^{\infty} \phi\left(c_{n}\right)\right|<\epsilon\left(2+V_{a}^{b} f\right) .
$$

One more observation is needed to complete the proof. The set C was chosen to include all points where α is not left-hand continuous. The sum of the series $\sum_{n=1}^{\infty} \phi\left(c_{n}\right)$ is the same if some other sequence $\left(c_{n}\right)_{n=1}^{\infty}$ is used so long as all points where ϕ is nonzero are included. Thus the proposition is true as stated.
7. Suppose F has bounded variation on $[a, b]$. According to p. 223 the variation of F satisfies

$$
V_{a}^{b} F=\lim _{t \rightarrow b} V_{a}^{t} F+\lim _{t \rightarrow b}|F(b)-F(t)| .
$$

Since α has bounded variation on [a, t], we already know that $V_{a}^{t} F=\int_{a}^{d}|f(x)| d V_{a}^{x} \alpha$. Moreover, $\lim _{t \rightarrow b}|F(b)-F(t)|$ $=\lim _{t \rightarrow b}\left|\int_{t}^{b} f d \alpha\right|$. But from p. 187 we see that this last limit is zero since $\Delta \alpha([t, b])=0$. From the same source $\int_{a}^{b}|f(x)| d V_{a}^{x} \alpha=\lim _{t \rightarrow b} \int_{a}^{t}|f(x)| d V_{a}^{x} \alpha$ since the variation
of α, like α, is defined on $[a, b)$. Now $\int_{a}^{b}|f(x)| d V_{a}^{x} \alpha$ $=V_{a}^{b} F$, as required.
8. We know that $\int_{c}^{0} f \circ \tau d(\alpha \circ \tau)=\int_{\tau(c)}^{\tau(v)} f d \alpha$ when $v<d$. For convenience set $g=f \circ \tau$ and $\beta=\alpha \circ \tau$. Then β is continuous at d and $\lim _{v \rightarrow d} \Delta \beta([v, d])=0$. Consequently, existence of $\int_{c}^{d} g d \beta$ is equivalent to existence of $\lim _{v \rightarrow d} \int_{c}^{v} g d \beta$ and $\int_{c}^{d} g d \beta=\lim _{v \rightarrow d} \int_{c}^{v} g d \beta$. The existence of this limit can be determined by examining $\lim _{v \rightarrow d} \int_{\tau(c)}^{\tau(v)} f d \alpha$. Set $F(x)=\int_{\tau(c)}^{x} f d \alpha$. Then F is continuous at $x=\tau(d)$ since α is continuous there. The next point to note is that $F \circ \tau$ is continuous at d. Thus

$$
\int_{\tau(c)}^{\tau(d)} f d \alpha=\lim _{v \rightarrow d} \int_{\tau(c)}^{\tau(v)} f d \alpha=\lim _{v \rightarrow d} \int_{c}^{v} g d \beta=\int_{c}^{d} g d \beta .
$$

9. Let $a=b_{1}<c_{1}<b_{2}<c_{2}<\cdots$ with $\lim _{n \rightarrow \infty} b_{n}$ $=b$. For every n let $\alpha\left(b_{n}\right)=0$ and $\alpha\left(c_{n}\right)=2 / \sqrt{n}$. Let α be linear on the intervals $\left[b_{n}, c_{n}\right.$] and $\left[c_{n}, b_{n+1}\right]$. Finally, let $\alpha(b)=0$.

On the intervals $\left[b_{n}, c_{n}\right.$] where α is increasing we will assign f positive values and on $\left[c_{n}, b_{n+1}\right.$] where α is decreasing f will be negative. To be specific, let $f\left(b_{n}\right)=f\left(c_{n}\right)=0$ for all n. At the midpoint of $\left[b_{n}, c_{n}\right]$ let f have the value $1 / \sqrt{n}$. Midway between c_{n} and b_{n+1} let f have the value $-1 / \sqrt{n}$. Between these points let f be linear. Let $f(b)=0$. Then f is continuous on $[a, b]$. Moreover $\int_{b_{n}}^{c_{n}} f d \alpha=\int_{b_{n}}^{c_{n}} f \alpha^{\prime}$. On $\left(b_{n}, c_{n}\right)$ the derivative α^{\prime} is constant with value $\alpha\left(c_{n}\right) /\left(c_{n}-b_{n}\right)$. Moreover $\int_{b_{n}}^{c_{n}} f$ is the area of a triangle with altitude $1 / \sqrt{n}$ and base $c_{n}-b_{n}$. Thus $\int_{b_{n}}^{c_{n}} f d \alpha=1 / n$. A similar analysis shows that $\int_{c_{n}}^{b_{n+1}} f d \alpha=1 / n$.

Let $\alpha_{n}(x)=\alpha(x)$ when $0 \leqslant x \leqslant b_{n}$ and $\alpha_{n}(x)=0$ when $b_{n}<x \leqslant b$. Then α_{n} converges uniformly to α on [a,b]. Moreover $\int_{a}^{b} f d \alpha_{n}=\int_{a}^{b_{n}} f d \alpha=\sum_{k=1}^{n-1} 2 / k$. Consequently, $\lim _{n \rightarrow \infty} \int_{a}^{b} f d \alpha_{n}$ does not exist.

INDEX

Absolute continuity, 129
Absolute integrability, 77, 91
characterized using sums, 238
for Stieltjes integrals, 202, 225
of real-valued components, 78
on measurable sets, 126
on unions and intersections, 115, 119
Absolutely integrable functions, 77
approximated by step functions, 146
are measurable, 136
Additivity, 47
countable, 119, 124, 128
finite, 55, 57, 114, 124
linearity implies, 68
of Stieltjes integrals, 184
of the total variation, 221
proof for integrals, 52
Almost all, 110
Almost everywhere, 110
Arc length formula, 81
Area definition, 122
Area interpretation of integrals, 8, 22, 122
Axiom of choice, 127
Boas, R. P., Jr., 244, 245
Botts, Truman, 244, 246
Bounded convergence theorem, 90
Bounded model of $\overline{\mathbf{R}}$. 32
Bounded variation, 79

Cantor's set and function, 109, 129
Cartesian product, 31, 147, 151
Cauchy criterion for
convergence of sequences, 50
existence of integrals, 50
limits according to a direction, 94
Chain, 216
Chain rule, 60
Change of variables, 59 ff.
in multiple integrals, 244
in Stieltjes integrals, 205 ff.
Comparison test, 78, 115, 120, 136
for Stieltjes integrals, 203
Compatibility theorem, 16
in $\overline{\mathbf{R}}, 38$
proof in $\overline{\mathbf{R}}$ P, 168
Composite function as primitive, 62
Composites of measurable and continuous functions, 139
Continuity
absolute, 129
in terms of open sets, 133
of integrals, 58
of Stieltjes integrals, 187
Continuous function
as integrand in Stieltjes integrals, 194
as integrator, 194
Continuous restriction, 134
Convergence
almost everywhere, 111
bounded, 90
dominated, 88
monotone, 86
theorems for sequences, 84, 86, 88, 96, 110, 112, 118, 204, 205
theorems for series, 87, 89, 112, 119
uniform, 83, 95
Convergent series as
an integral, 31, 36
a Stieltjes integral, 192
Countable additivity, 119, 124, 128
Countable sets
are M-null, 108
in the fundamental theorem, 26, 109
Countable-to-one, 63
Countable union of
$f M$-null sets, 106
integrable sets, 124
measurable sets, 125
Φ-null sets, 159
Covering lemma, 143
Cross product, 68, 227
Curves
equivalent, 215
length of, 80
opposite, 215
parametric, 80, 214

Degenerate intervals are M-null, 108
Derivative definition, 41
Differentiability of integrals, 58 , 187, 244
Differential notation in iterated integrals, 151
Differentiation term-by-term, 85
Direction, 93

Discontinuities of
functions of bounded variation, 222
regulated functions, 225
Division, 7
compound, 165 ff.
doubly compound, 168
in $\overline{\mathbf{R}}^{p}, 32$
partial, 76
refinement of, 77
regular, 56
subset of, 74
tagged, 7, 17
tagged partial, 77
Dominated convergence theorem, 88, 110
for series, 89
for Stieltjes integrals, 205
proof, 96 ff.
Dot product, 68, 227
Existence of
integrals on subintervals, 51
Stieltjes integrals on subintervals, 183
Existence theorems for Stieltjes integrals, 192

Finite additivity of
functions of intervals, 57
integrals, 55
integrals on non-interval sets, 114
Stieltjes integrals, 184
Finite points, 31
Fubini's theorem, 35, 150
and integrable sets, 153
and measurable sets, 153
assuming absolute integrability, 174
on non-interval sets, 153
preliminaries to the proof, 164 ff.
proof, 168 ff.
statement, 152
Function
absolutely integrable, 77 ff.
Cantor's, 109, 129
characteristic, 123
complex-valued, 17, 185
continuous null, 128
increasing at a point, 46
measurable, 133
non-integrable with integrable absolute value, 127
null, 105
of bounded variation, 79
of bounded variation as integrand, 194
of bounded variation as integrator, 194
of bounded variation is regulated, 222
piecewise monotone, 101, 207
regulated, 193
simple, 138
step, 116
variation, 201, 221
vector-valued, $17,49,78,184$
Functional, 229
Fundamental theorem of calculus, $25,27,109,130$
in iterated integrals, 153
proof, 40 ff.

Gauge integral, 177
Gauge limit, 38, 177, 181
Gauges, 10
in $\overline{\mathbf{R}}^{P}, 33$
on subintervals, 65

Generalized Riemann integral definition, 18
improper extensions, 30
Graph of continuous function is M-null, 109
Greatest lower bound of two functions, 82
Green's theorem, 216, 220

Henstock, Ralph, 2, 245
Henstock's lemma, 74
for Stieltjes integrals, 186
proof, 90
Hirschman, I. I., Jr., 245
Hölder's inequality, 143, 245
Hyperplane, 68

Inequalities
for integrals, 49
Hölder's, 143, 245
Young's, 147
Infimum, 82
integrability of, 83
Infinite points, 31
Integrability
absolute, 77, 91, 126, 202, 225
deduced from the fundamental theorem, 28
in McShane's sense, 237
necessary conditions in $\overline{\mathbf{R}}^{p}, 155$
of continuous functions, 57
of lattice combinations, 83, 204
of polynomials, 28
of products, 141, 210
on subintervals, 51, 183
on subsets, 115
sufficient conditions in $\overline{\mathrm{R}} P$, 156 ff.

Integrable sets, 123
covered by intervals, 145
operations on, 124
Integral
area interpretation, 8, 22, 122
continuity of, 58,187
differentiation of, 58, 187, 244
existence as analogue of series convergence, 67
gauge, 177
generalized Riemann definition, 18
improper, 28
inequalities, 49, 185
iterated, see Iterated integral
Lebesgue 2, 231, 234, 244
line, 214
linearity in integrand, 49, 183
linearity in integrator, 184
multiple, 31, 150
norm, 177
of Stieltjes type, see Stieltjes integral
on an unbounded interval, 21
on a path, 216
on $\overline{\mathrm{N}}, 36$
oriented, 58
refinement, 177
r-fold, 152
Riemann definition, 8
two-fold, 150
zero, 49, 105
Integration
component-by-component, 49
of absolute values, 78
of series of positive terms, 87
of series term-by-term, 37, 87, 112
on closed, bounded sets, 117
on differences of sets, 114
on expanding sequences, 118
on non-interval sets, 34, 113
Integration by parts, 50
correction term, 197
for gauge integral, 199
for norm integral, 196
for refinement integral, 196
for Riemann integral, 195
Integrators, 177
continuous functions as, 194
functions of bounded variation as, 194
integrals as, 186
sequences of, 211
Interchange of limits, 93
Intervals
bounded, 23
in $\overline{\mathbf{R}}^{p}, \mathbf{3 1}$
non-degenerate, 31
open in $\overline{\mathbf{R}}^{\text {P }}$, 31
oriented, 216
overlapping, 31
unbounded, 23
Iterated integral, 34, 150
analogue of primitive, 158
as function of intervals, 155,158
behavior as conditions for integrability, 155, 159
equality of, 155
Iterated limits theorem, 95
Kurzweil, Jaroslav, 2, 245
Lattice operations, 81
on measurable functions, 140
Least upper bound, 81
Lebesgue
dominated convergence theorem, 88, 96, 110, 205
integral, 2, 231, 234, 244
measurable sets, 231, 235
measure, 231, 235
Length
Euclidean, 17
of bounded intervals, 18
of curves, 80
of unbounded intervals, 23
Limits
according to a direction, 94
Cauchy criterion for, 94
left-hand, 188, 222
gauge, 38, 177, 181
interchange of, 93
iterated, 93, 95
norm, 177, 181
of functions of bounded variation, 222
of increasing functions, 222
of integrals over expanding intervals, 28, 65, 121, 130
of the variation function, 223
one-sided, 188
refinement, 177, 181
right-hand, 182, 188, 222
uniform, 83, 95
Linearity of integrals, 49, 183
Line integral, 214
Lipschitz continuous, 214
L_{p} space, 245
McShane, E. J., 232, 237, 244, 245, 246
Mean value theorems for integrals of products, 211
Stieltjes integrals, 209
Measurability of
Cartesian products, 147
derivatives, 141
functions, 133
limits of sequences, 140
null functions, 140
real-valued components, 134
sets, 125
sets on which integrals exist, 126
Measurable functions, 133
algebraic operations on, 140
approximated by simple functions, 139
approximated by step functions, 146
composed with continuous
functions, 139
sequences of, 140
Measurable sets, 125
characterized, 234
in Lebesgue's sense, 231
Measure
in Lebesgue's sense, 231, 235
of intervals, 33
of sets, 123
properties, 124, 125
Monotone convergence theorem, 86, 112
alternative proof, 102
for Stieltjes integrals, 204
proof, 96 ff .
Multiple integrals, 31, 150 ff.
change of variables, 244
Munroe, M. E., 244, 245, 246
Negative part, 82
Norm integral, 177
Norm limit, 177, 181
Norm of a division, 181
Numbers
extended positive integers, 36
extended reals, 22
Path, 216
Piecewise monotone and one-toone, 101, 207

Point at infinity, 31
Positive integers augmented by ∞, 36
Positive part, 82
Primitive, 27
as integrand and integrator, 195
existence, 57, 85
not of bounded variation, 79, 242
of absolutely integrable function, 79, 81
Product
Cartesian, 31, 147, 151
cross, 68, 227
dot, 68, 227
integrability of, 141, 210
Refinement, 77
integral, 177
limit, 177, 181
Regulated function, 193
as integrand, 194
as integrator, 194
uniform limit of step functions, 193, 224
Restriction of a function, 134
Riemann integral definition, 8
Riemann sum, 7, 23, 33
for iterated integrals, 164
for Stieltjes integrals, 177
in McShane's sense, 237
Riesz representation theorem, 230
Sequence of functions
decreasing, 86
increasing, 86
monotone, 86
Sequence of integrators, 211
Sequence of sets expanding, 118
non-overlapping, 118

Series
as an integral, 31, 36
as a Stieltjes integral, 192
dominated convergence theorem, 89
double, 171
Fourier, 245
integration term-by-term, 37, 87, 112
of positive terms, 87
Set
bounded, 116
Cantor, 109, 129
closed, 116
countable set is M-null, 108
countably infinite, 19
fM-null, 106
$G_{8}, 234$
integrable, 123
inverse image of, 133
Lebesgue measurable, 235
Lebesgue null, 233
measurable, 125
measurable characterized, 234
M-null, 107, 128
non-countable null, 109
non-measurable, 127
open in an interval, 116
Ф-null, 159
Set operations
on integrable sets, 124
on measurable sets, 125
Splitting intervals and sums, 53, 92
Step functions, 46, 143
approximate absolutely integrable functions, 146
approximate measurable functions, 146
as integrand and integrator, 191
Stieltjes integral, 177 ff.
additivity, 184
change of variables, 205 ff .
comparison test, 203
component-by-component integration, 184
continuity of, 188
convergent series as, 192
differentiability of, 188
dominated convergence theorem, 205
inequalities, 185
limits of, 187
linearity, 183
reduced to ordinary integral, 186
Straddle lemma, 41
Stricter than, 12, 40
Subset of
fM-null set, 106
$\boldsymbol{\Phi}$-null set, 159
Substitution, 60
Supremum, 81
integrability of, 83

Tag, 7

Tagged division, 7, 17
compatible with $\gamma, 10$
γ-fine, 10
in $\overline{\mathbf{R}}^{\text {P }}, 32$
McShane's sense, 237

Tagged intervals
compatible with $\gamma, 33$
γ-fine, 33
in $\overline{\mathbf{R}}^{P}, 32$
McShane's sense, 237
Taylor, A. E., 244, 246
Tonelli's theorem, 156
Total variation, 79, 201
additivity of, 221
Uniform convergence
according to a direction, 95
of sequences, 83
Uniform convergence theorem
for integrals, 84
for Stieltjes integrals, 194
Uniformly continuous, 46
Uniqueness of
integrals, 18, 39
limits, 94
Variation function, 201, 221
Volume of 3-dimensional set, 123
Weiss, Guido, 245
Williamson, J. H., 244, 245, 246
Young's inequality, 147
Zero integrals, 49, 105

The Generalized Riemann Integral

The Generalized Riemann Integral is addressed to persons who already have an acquaintance with integrals they wish to extend and to the teachers of generations of students to come. The organization of the work will make it possible for the first group to extract the principal results without struggling through technical details which they may find formidable or extraneous to their purposes. The technical level starts low at the opening of each chapter. Thus, readers may follow each chapter as far as they wish and then skip to the beginning of the next. To readers who do wish to see all the details of the arguments, they are given.

The generalized Riemann integral can be used to bring the full power of the integral within the reach of many who, up to now, haven't gotten a glimpse of such results as monotone and dominated convergence theorems. As its name hints, the generalized Riemann integral is defined in terms of Riemann sums. The path from the definition to theorems exhibiting the full power of the integral is direct and short.

