
290 pages    spine: 9/16"    finish size: 5.5" X 8.5"   50 lb stock4-color Process 

AM
S / M

AA PR
ESS

AMS / MAA    THE CARUS MATHEMATICAL MONOGRAPHS VOL 20VOL
20AMS / MAA    THE CARUS MATHEMATICAL MONOGRAPHS

The Generalized
Riemann Integral

Robert M. McLeod

The Generalized Riemann Integral

The Generalized Riemann Integral is addressed to persons who already 
have an acquaintance with integrals they wish to extend and to the 
teachers of generations of students to come. The organization of the 
work will make it possible for the � rst group to extract the principal 
results without struggling through technical details which they may 
� nd formidable or extraneous to their purposes. The technical level 
starts low at the opening of each chapter. Thus, readers may follow 
each chapter as far as they wish and then skip to the beginning of the 
next. To readers who do wish to see all the details of the arguments, 
they are given.

The generalized Riemann integral can be used to bring the full power 
of the integral within the reach of many who, up to now, haven't 
gotten a glimpse of such results as monotone and dominated conver-
gence theorems. As its name hints, the generalized Riemann integral 
is de� ned in terms of Riemann sums. The path from the de� nition to 
theorems exhibiting the full power of the integral is direct and short.
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PREFACE 

In calculus courses we learn what integrals are and how 
to use them to compute areas, volumes, work and other 
quantities which are useful and interesting. The calculus 
sequence, and frequently the whole of the undergraduate 
mathematics program, does not reach the most powerful 
theorems of integration theory. I believe that the general-
ized Riemann integral can be used to bring the full power 
of the integral within the reach of many who, up to now, 
get no glimpse of such results as monotone and domi-
nated convergence theorems. As its name hints, the gener-
alized Riemann integral is defined in terms of Riemann 
sums. It reaches a higher level of generality because a 
more general limit process is applied to the Riemann sums 
than the one familiar from calculus. This limit process is, 
all the same, a natural one which can be introduced 
through the problem of approximating the area under a 
function graph by sums of areas of rectangles. The pa th 
from the definition to theorems exhibiting the full power 
of the integral is direct and short. 

I address myself in this book to persons who already 
have an acquaintance with integrals which they wish to 
extend and to the teachers of generations of students to 
come. T o the first of these groups, I express the hope that 
the organization of the work will make it possible for you 
to extract the principal results without struggling through 
technical details which you find formidable or extraneous 
to your purposes. The technical level starts low at the 
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opening of each chapter. Thus you are invited to follow 
each chapter as far as you wish and then to skip to the 
beginning of the next. T o readers who do wish to see all 
the details of the arguments, let me say that they are 
given. It was a virtual necessity to include them. There are 
no works to refer you to which are generally available and 
compatible with this one in approach to integration. 

I first learned of the generalized Riemann integral from 
the pioneering work of Ralph Henstock. I a m in his debt 
for the formulation of the basic concept and for many 
important methods of proof. Nevertheless, my presenta-
tion of the subject differs considerably from his. In partic-
ular, I chose to use only a part of his technical vocabulary 
and to supplement the part I selected with terms from E. 
J. McShane and other terms of my own devising. 

I wish to express my appreciation to the members of the 
Subcommittee on Carus Monographs for their encourage-
ment . I a m particularly indebted to D . T. Finkbeiner. His 
support enabled me to persevere through the years since 
this writing project began. He and Helene Shapiro also 
worked through an earlier version of the book and pro-
vided helpful comments. 

I thank the Department of Mathematical Sciences of 
New Mexico State University for its generous hospitality 
during a sabbatical leave year devoted in large part to the 
writing of the first version of the book. Finally, I thank 
Jackie Hancock, Joy Krog, and Hope Weir for expert 
typing. 

Gambier , Ohio 
January, 1980 

ROBERT M . M C L E O D 
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APPENDIX 

SOLUTIONS OF IN-TEXT EXERCISES 

Chapter 1 

1 . Begin by choosing an integer m so that l/m < c. 
Enclose each number 1 / / in an interval [l/j — dj, l/j + 
dj] which is contained in y(l/j") for j = 1, 2 , . . . , m. These 
can also be chosen so that l/j + d., < l/(J1) - d}_, for 
j = 2,3,...,m and 0 < l/m - dm. 

Tag [l/j - dj, l/j + dj] with l/j for 2<j<m. Tag 
[1 - dx, 1] with 1. The rest of [0, 1] is [0, l/m - dm] and 
each of the intervals [l/j + dj, l/(j - 1) - dj_x] for 
2 < j < m. Tag the former with 0 and the latter with any 
of its points, say l/j + dj. N o w we have a division of 
[0, 1] with 2m intervals tagged in such a way as to be 
γ-fine. 

2. (a) Let 35 e Rs and let zJ Ε Φ . Since / has length 
less than δ it is contained in any open interval of length 28 
centered on a point of J. Thus / C (ζ — δ, ζ + δ ) . In 
consequence Φ £ GRa. 

When Φ ε GRg and ζ / Ε ^ / ς ί ζ - ί , Η δ) . Since 
the length of (ζ - δ, ζ + δ ) is 2δ and the endpoints of J 
are between ζ — δ and ζ + δ, L(J) < 28. Consequently 
Φ ε R2S. 

(b) Suppose the Riemann integral of / on [a, b] exists. 
Choose δ so that \Jb

af-fL(^)\ < e when L(J) < δ for all 

247 
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zJ in Tha t is, the inequality holds for all < 3 ) in RB. Let 
γ ( ζ ) = (ζ - δ / 2 , 2 + δ / 2 ) for all ζ in [a, b]. Then the set 
of all γ-fine is GRs/2. Since GRs/2 Q Rs, the gener-
alized Riemann integral of / exists and is the same as its 
Riemann integral. 

Now l e t / b e a generalized Riemann integrable function 
with the added property that f L ^ ) \ < £ f o r a 1 1 6 0 

in GRS for some positive δ. Since Rs C GRS the Riemann 
integral of / also exists. 

Now we have characterized the Riemann integrable 
functions among the generalized Riemann integrable 
functions as those for which there is a gauge γ ( ζ ) = (ζ — 
δ, ζ + δ ) with constant δ such that | / * / - / i ( ^ ) l < £ f o r 

all γ-fine Φ . 
3 . Let f(x) = 0 when χ is irrational. Let p/q be a 

fraction in lowest terms. Set f(p/q) = q- Since the 
rationals are countable this function is integrable on any 
interval [a, b] and its integral is zero, according to 
Example 4, p . 19. Also / is unbounded on every interval 
[c, d] for the following reasons. Let Μ be given. Select a 
prime number q such that q> Μ and 2/q <d — c. There 
is an integer k such that k/q < c<(k+ Y)/q. Then 
(k + 2)/q < d. The prime q divides at most one of k + 1 
and k + 2. Thus f((k + l)/q) = q o r / p + 2)/q) = q. 

4. There are elements a and b in R such that I is one 
of (a , b), [a, b), (a, b], and [a, b\. Fix d in (a , b). There is a 
function / on I such that F and G are primitives of / on / , 
hence on any closed subinterval of / . For any χ in I such 
that χ < d, id

xf= F(d) - F(x) and / * / = G(d) - G(x). 
Thus F(x) = G{x) + Κ where K= F(d)- G(d) when 
χ e / with χ < d. When xEl &ndd<x, jx

df=* F(x) -
F(d) = G(x) - G(d). Again F(x) = G(x) + K. Trivially 
F(rf) = G(d) + Thus F(x) = ( / (*) + A- for all χ in 7. 

5. There is a gauge γ on [a, 6] such that | / * / - /£(<$)! 
< e when Φ is a γ-fine division of [a, 6]. Let ί G (a , 6). 
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Since / is also integrable on [s, b], there is a gauge γ , such 
that | /f/ — / £ ( £ ) ! < c when S is a γ,-fine division of 
[s, b\. It is possible to choose ys so that ys(z) C y(z), too. 
Choose c so that c e y(a) and | / ( a ) |L ( [ a , c]) < c. Let 
s £ (a, c). Let S be a γ,-fine division of [s, b]. Let 
Φ = {a[a, j ] } U S . Then ^ is a γ-fine division of [a, b]. 
Now 

Pf-ffUlff-M6*) + / M 6 ) - f V | 
+ \f(a)L([a,s])\. 

Each term on the right is less than «. Hence 

6. We know that Jgf exists if and only if Ι ύ η , ^ / ό / 
exists. Also / " / = lim^^/o/. Using a primitive of / on 
[0, /] we get J 0 / = + (* - « Κ , + ι where w < / 
< m + 1. When / " / exists we specialize t to integer values 
and get J o 7 = » X . - . « J o / = Σ"-ι«*· Conversely, when 
the series converges, l i m m ^ 0 0 a m + I = 0. Thus l im^^/o/ 
- 1 ™ * - . . ο Σ ~ - ι « * β Σ " - α · 

7. (a) This is the scale: 

I I I I I I I I I ' I I I 

- 0 0 - 9 - 4 - 2 - 1 - 1 / 2 0 1/2 1 2 4 9 oo 

(b) Clearly h is strictly increasing and maps [—oo, oo] 
onto [ - 1 , 1]. Given χ and y in with x¥=y, there is 
some coordinate where they differ, say x^y,. Then 
λ(χ , ) φ h(yt) so that H(x) φ H(y). We have shown Η is 
one-to-one. T o show that it is onto, take y_ such that 
— 1 < < 1 for 1 < i < p. There is xt in R such that 
Ηχί)-)Ί· Hence Η maps the point χ with these 
components xt onloy. 
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Since h is increasing it maps [u, v] onto [«(«), h(v)]. 
Consequently Η maps [κ,, ©,] X — X [up, vp] on to the 
Cartesian product of the intervals [«(«,), h(v,)]. The same 
is true of intervals other than closed intervals. 

(c) Draw a square. Put on its edges the scale shown in 
par t (a). 

Chapter 2 

1. Fix γ , and γ 2 so that \fM(Gb) - f,f\ < c when is 
γ,-fine and | g3/(<>D) - j,g\ < c when Φ is γ 2 -ί ίηβ. Let 
γ ( ζ ) C γ , ( ζ ) Π γ 2 ( ζ ) for all ζ in [a, b\. Then Φ is γ,-fine 
and γ 2-ίΐηβ whenever it is γ-fine. Thus 

when <Φ is γ-fine since ( / + g)M(^) = /Μ(<Φ) + g M ( < 3 ) ) . 

This shows that / + g is integrable and that / / / + / / g is 
its integral. 

Since (ς/)Μ(<Φ) = c(fM(q))) we also have 

when ^ is γ-fine. Thus c / , / is the integral of cf. 

A standard induction argument shows that 2 A - I C * / A * S 

integrable when each fk is integrable a n d that 2 * - i c * / / / * 
is its integral. 

2. Let γ be a gauge on / such that \$if- }Μ(0))\ < e 
and \fjg — gM^)] < c when <Φ is γ-fine. Since g is real 
valued, gM(<%) < J,g + e. Also |/M(<>D)| < g M ^ ) for all 

( / + g ) M ( ^ ) - J / / - J / 

(c/)M(fiD) - c £ / | < |c| |/M(*D) - J^/ | < |c|c 
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<>D since | / | < g and Μ takes nonnegative values. Thus 

Since e is arbitrary, \fjf\ < ftg, as claimed. 
3 . By hypothesis, for each whole number η there is a 

gauge γ„ such that l/Mf^D) - / M ( S ) | < 1/u when and 
S are γ,,-fine divisions of / . W e may also suppose 
1j(z)Ql,(z) when / < / . (Replace y„(z) by γ , ( ζ ) Π 
γ 2 ( ζ ) η · · · Π γ„(ζ).) For each Λ fix a γ,,-fine division ^ ) Λ , 

Consider the sequence of elements/Af( < s D n ) in R ? . Let 's 
show that this is a Cauchy sequence. Suppose ι < j . Then 
fyj is not only γ 7-βηβ it is also γ,-fine since γ 7 is stricter 
than γ,. Hence 

I t follows easily that (/Λ/ί^η))™»! is a Cauchy sequence 
in R ? . Consequently it converges to a limit A in R ? . 

T o show that A is the integral of / , fix Ν so that 
1/JV < e / 2 and \A -fM(<$N)\ < e / 2 . Let <Φ be γΛ , - f ine . 
Then 

|/M(*D) - A\ < | / Μ ( Φ ) -fM(%)\ + | / M ( % ) - Λ | 

< l/N + €/2<€. 

ThmA = i,f. 

4. The techniques needed for the solution of this 
exercise anticipate the discussion on p . 75. There it is 
shown that & is a subset of a division "D of I. Let 
9 = - g . Then v(&) + v(<5) = vi6!)). Since 0 < v(J) for 
all J, 0 < v(9). Moreover i>(fy) = y(7) since ν is finitely 
additive. Consequently r(&) < ?(/). 

| / i l / ( ^ . ) - / A / ( ^ . ) | < l A 
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5. Let Ε, = {χ £ [a, ft]: a(x) = t). Then £ , C C when 
ι = oo and when t = — oo. When t is finite we need to 
show that E, — C is countable. Let χ e E, — C. Then 
σ\χ) Φ 0, consequently there is δχ such that σ(γ) φ σ(χ) 
when 0 < \γ — x\ < δχ. In other words, the set E, — C is 
made up of isolated points. It must be countable. T o see 
this, let F„ = [χ £ [-η,«] : δχ > 1 /η}. Then £ , - C = 
L C - i ^ i r ^ suffices to show that each Fn is finite. Fo rm a 
division of [—Μ, /i] into subintervals of length l/n. Each 
subinterval contains at most one point of Fn. Thus Fn is 
finite. 

6. There are gauges γ , and y2 on [a, c] and \d, b] such 
that \iCaf-fL(^>i)\ < e / 2 w h « n <φ, is a γ,-fine division of 
[a,c] and /L(<5>a)| < c / 2 when % is a γ 2-Ηηβ 
division of [d, b]. We may also suppose γ , (ζ ) C γ ( ζ ) for 
all ζ in [a, c] and γ 2 ( ζ ) C γ ( ζ ) for all ζ in [d, ft]. Fix 3 ) , 

and <ΐ)2. Let S be a γ-fine division of [c, d]. Set 
Φ = Φ , U S U %. Then Φ is a γ-fine division of [a, ft]. 
Consequently, 

| £ 7 - / L ( S ) | < | f / - / L ( < D ) | J V | 

This uses the finite additivity of the integral. N o w these 
terms are less than «, c / 2 , and e / 2 . Hence the conclusion 
follows. 

(If a = c or ft = d, some terms become zero but 
otherwise the argument goes the same.) 

Note : A sharpening of the argument above shows that 
\iif- fL(&)\ < c. This latter inequality is a special case 
of Henstock's lemma. (See p . 74.) 

7. (a) When / > 0 the function s - » / * / is decreasing 

file:///iif-


SOLUTIONS FOR CHAPTER 3 253 

on the interval (a, b) and nonnegative. Such a function is 
bounded above if and only if l inv^J* / exists. Existence 
of this limit is exactly the criterion for existence of / * / . 

(b) The function F : ί - » / * / has a limit at a provided 
the Cauchy criterion is satisfied. Tha t is, it suffices to find 
c such that \F(t) - F(s)\ < e when a < s < t < c. Since 
J*g exists, l i m ^ / j g does exist. Hence there is c such that 
Msg ~ Jfel < £ w n e n a<s<t<c. But now 

| F ( i ) - F ( 5 ) | = f'f < f g = f V f V < -
Js Js *s Jt 

Chapter 3 

1. Since Ιϊτα,^^Ι/λ[χ dx = oo, we know that 
Jf° l /Vx dx does not exist. Set fn(x)= \/Jx when 
1 < χ < η and f„(x) = 0 when n< x. Then fn converges 
uniformly to 1/^Jc" on [1, oo). 

2. The function / is integrable on [a, b]. Set 
F (c ) = lim^^F^c) and F(x) = F(c) + Jxf elsewhere in 
[a, b\. (We are using the oriented integral here.) 

We are going to get an inequality from which two 
separate deductions can be made. By hypothesis there is nt 

such that ) / „ ( * ) - / 0 c ) | < c for all χ in [a, b] and all 
η > nt. Let u and υ be in [a, b]. Then 

\W - Fn(u) - (F(v) - F(u))\ = | f (/„ - / ) 

< e\v — u\ 

when η > nf. 
The first conclusion is uniform convergence of Fn to F. 

T o get it let u = c. Then one more application of the 
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triangle inequality yields 

\F„(v) - F(v)\ < \F„(c) - F ( c ) | + e{b - a). 

Uniform convergence follows easily. 
The next conclusion is uniform convergence of 

difference quotients. Let u = χ and υ = χ + t with t φ 0 . 
Divide by \t\. Then 

Fn(x + t)-Fn(x) F(x + t)-F(x) 
< € 

for all χ and t such that χ and x + r are in [a, b] and all 
« > « e . 

Choose χ so that F„'(x) = / , ( x ) for every integer n. 
Select 8. such that 

Fn(x + t)-Fn(x) 

when η = « t and |*| < S t . N o w 

F ( x + r) - F ( x ) 

F ( x + 0 - F ( x ) F n ( x + r ) - F n ( x ) 

F„(x + t)-F„(x) 
+ ! / „ ( * ) - / 0 ) Ι · 

Each term is less than c when η > nt and \t\ < 8f. 
Consequently F ' ( x ) = / ( x ) . 

Let C„ be the set of values of χ for which we cannot 
claim that F„'(x) = /„ (x) . Then C„ is countable and 
( J " _ , C n is also countable. Outside this set we know that 
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F' = / . Since F is continuous, it is a primitive of / on 
[a, b]. 

(This argument can be greatly abbreviated by use of the 
iterated limits theorem given in Section S3.9.) 

3 . It is enough to consider increasing functions. We 
may apply the proposition proved in the preceding 
exercise. Thus it is our goal to define functions f„ which 
converge uniformly to / and have primitives. Step 
functions are the right choice. Since / is increasing, for 
any number Κ in [f(a),f(b)] there is at least one number c 
in [a, b] such that f(x) < Κ when χ < c and Κ < f(x) 
when c < x. Let the integer η be given and set 
4 , = ( / ( & ) - / ( « ) ) / « . For ι = 1, 2 , . . . , η - 1, let Kt = 
/ ( a ) + id„. Choose a corresponding c,. Set c0 = a a n d 
c„ = b. D e f i n e / , so that /„(c , ) = / (c , ) for ι = 0 , . . . , η and 
fn(x) = Kj when c , _ , < *<<? , . It is immediate that 
\f(x)-f„(x)\ < dn for all χ in [a,b]. Consequently /„ 
converges uniformly to / on [a, b\. 

Chapter 4 

1 . Recall that Ε is g/Ai-null whenever Ε is /A/-null. 
N o w apply this with the constant function with value 1 in 
place of / a n d / in place of g. Thus Ε i s /M -nul l when Ε is 
M-null. By definition this means that | / | M ( S ) < c for 
every γ-fine partial division S whose tags are in E. When 
Φ is a division of / and & is the subset of Φ whose tags 
are in E, I/IMC^) = | / | M ( S ) since / vanishes outside E. 
Thus Γ , | / | = 0. 

2. There is a gauge γ on I such that I/IM^5))) < c 
when Φ is a γ-fine division of / . Let Ε = {χ e / : f(x) 
φ 0 } . Let S be a γ-fine partial division of / whose tags are 
in E. There is a γ-fine division <Φ such that & C <>D. Then 
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| / | M ( S ) = | / |Λ/(<3))<€. Thus £ is | / |M-nu l l . Let 
g(x) = l / l /OOl when χ EE. Then £ is g | / |M-nu l l , i.e., 
M-null. 

3 . Let M ' and Μ be the interval measures in Rp~1 and 
IV, respectively. For a given c we must define γ on £ so 
that M ( S ) < c when S is a γ-fine partial division with 
tags in £ . 

Using the continuity of / choose γ , ( ζ ) so that 
| / ( x ) - / ( z ) | < e' when χ Ε / Π γ , ( ζ ) . Fix a γ,-fine 

division Φ, of / . For each zJ in 3 ) , let / / , be the interior 
of 7 , i.e., the open interval obtained by peeling the faces 
from / . Let Β be the union of all faces of all J of 3 ) , . Then 
Β X R is an M-null subset of Rp since it is a finite union 
of degenerate intervals. Thus there is γ defined on Β X R 
such that M ( S ) < e / 2 when δ is γ-fine with tags in 
5 X R . 

When χ e / - Β there is a unique J such that χ e 
Set γ ( χ , / ( χ ) ) = / / / Χ ( / ( ζ ) - € ' , / ( ζ ) + €')· Let S be 

γ-fine with tags in £ . Separate S into subsets S , and S 2 

having tags in Β X R and (I-B)XR. Then M ( S , ) 
< c / 2 and M ^ < 2 y W ' ( 7 ) 2 c ' < 2 c ' M ' ( / ) . (The first 
inequality on M^&j) results from grouping together all 
terms associated with a single J of 3 ) , . ) The choice 
e' = c / ( 4 M ' ( / ) ) gives M ( S ) < c, as desired. 

4. According to Example 5, p . 86, the functions 
g^(i~lf„) are integrable. There is a bound A for / , / , . 
Since g Λ ( / - ' / „ ) < Γ% for all «, Λ (Γ%)) < i~lA. 
Since / , < fn+, the sequence g Λ (/ '/„) increases for fixed 
i. Thus JjA, = lmv^JVtg Λ ( r ' / „ ) ) < ΓιΑ, too. T o see 
that l i m ^ ^ A , = A, first let χ ε £ . Then g Λ (i Ά„) has 
value 1 a t χ for all large n. Hence A,(x) = 1 and 
ϋπι,.^Α,ΟΟ = 1 . W h e n xEl-E, (gA(r%))(x) 

< 1 ' / ( x ) , h e n c e A,(x) < i ' / ( x ) . C o n s e q u e n t l y , 
hm^^h^x) = 0. A second use of monotone convergence 
gives f,h = l i m ^ J j A , = 0. 
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5. The essentials of the solution can be conveyed by 
an example in N. Consider the sequence 1, — 1, 1, 1/2, 
— 1/2, 1/2, 1/3, — 1 / 3 , 1 / 3 , . . . . This is our function 

•f: Ν -» R. Note that the terms go in groups of three. Let's 
replace every third member by zero. Tha t means integrate 
/ over Ε = {1, 2 , 4 , 5, 7, 8 , . . . }. It is easy to see that 
exists. Next replace the first member of each group by 
zero; i.e., integrate / over F= (2, 3, 5, 6, 8, 9 , . . . }. 
Integration over Ε Π F is the same as summing the 
middle terms of each group. These terms are negatives of 
terms of the harmonic series. Thus JEnF f does not exist. 
Neither does fEUF f for much the same reason. 

6. For each positive integer n, partition / into a finite 
collection % of pairwise disjoint intervals Κ such that the 
diameter of Κ is no more than l / n . Also make the choices 
so that each interval of 3F B + , is contained in an interval of 
<5n; i.e., & n + l is a refinement of 9n. 

Define fn from <&„ as follows. For each χ in / , there is 
just one interval Κ of 9„ to which χ belongs. Let 
f„(x) = l u b { / ( x ) : xE K). This is meaningful everywhere 
since / is bounded above. (Recall that / has a maximum 
on Ε and / is constant on I — E.) 

The sequence ( / , )*_ , decreases since 9 n + l is a 
refinement of 9„. 

Now let χ Ε I — E. There is an open interval y(x) 
which does not intersect Ε since Ε is closed. Every 
interval of sufficiently small diameter containing χ is a 
subset of y(x). Since / vanishes on y(x) so does / „ (* ) = 0 
for sufficiently large n. 

When χ ε Ε there is an open interval y(x) such that 
l/OO - / ( x ) | < c for all y ε Ε Π y(x). There may be 
points in y(x) which are not in E. But / is zero a t those 
points. Since 0 < f(x), f(y) < / ( x ) + c for all / in γ ( χ ) . 
For large enough η the interval of 9n which contains χ is 
a subset of γ ( χ ) . T h u s / , ( χ ) < / ( χ ) + e for all sufficiently 



258 APPENDIX 

large π. The definition of /„ also insures t h a t / ( x ) < fn(x\ 
H e n c e / ( x ) < f„(x) < f(x) + c for sufficiently large n. 

We have shown that / ( x ) = l i m f l ^ 0 0 / I ( x ) for all χ Ε I, 
as required. 

7. Set Ει = Hl and E„ = Hn- for η > 2. Note 
that Hn_lQHn. T h u s / is integrable on En. Since / i s also 
bounded on each E„, it is absolutely integrable on E„. 
Moreover JE \f\ < bn(M(H„) - M ( / / „ _ , ) ) for η > 2. But 
M(Hn) - M\Hn_x) = (2ny - (2 (« - 1 ) ) ' < pVn'~'. 

Thus Σ Ϊ - Ι / Α , Ι / Ι i s convergent since Σ ? - ι Μ ' _ 1 i s 

assumed convergent. This implies absolute integrability 
of/ . 

8. We know that | / | is integrable on En for all η since 
l/l < g and g is integrable on / . By induction / is 
absolutely integrable on U i - i ^ i f ° r a u * n since absolute 
integrability carries over to unions of two sets. Let 
F , = £ , and Fn = U 7 - i ^ i " ( U " - / ^ ) when Λ > 2. N o w / 
is absolutely integrable on each member of the pairwise 
disjoint sequence (£„)"_ P Moreover 27 - i JV„ l / l < / / £ f ° r 

all n. Thus Σ Π - I J F J / I i s f i n i t e - % t n e countable 
additivity proposition / is absolutely integrable on 
I X - , F „ , i . e . , o n £ . 

9. The characteristic functions of Π 7 - ι ^ ί decrease to 
the characteristic function of Πί^ι-^ί·· Thus the monotone 
convergence theorem yields the integrability of the 
intersection of the sequence. 

Now U 7 - i ^ i a r e integrable sets whose characteristic 
functions increase to the characteristic function of the 
union of the sequence. Since Mf l J i - i ^ / ) < Σ < - i a n d 

M i U i - i ^ i ) < M(^) when U S - i ^ , is contained in the 
integrable set F, the monotone convergence theorem 
implies integrability of \JT,iEf under each of the 
conditions which have been given. 

10. The conclusions in (a) follow from known 
properties of integrable sets, since the intersection with a 
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bounded interval / distributes over the other operations. 
Fo r instance, (E U F) Π J = (Ε Π / ) U ( F Π J ) . Thus 
( £ U f ) n i is the union of integrable sets and is 
integrable itself. The others go similarly. 

Measurability of ΠΓ-ι^/ι a n < * U^-i^n follow similarly. 
The inequality is trivial when the right-hand side equals 
oo. When it is finite, every set En is integrable and we 
know from the previous exercise that U^-i^n * s m t e " 
grable. Moreover u ( | J ?» < Σ 7 - 1 < ΣΓ-1 μ ( 3 ) 
for all n.Monotone convergence tells us that p(\JT-\E,) 

When the sets are nonoverlapping and Uif-i^n is not 
integrable the inequality just proved becomes equality. 
When UJf-i^n * s integrable, we are back to countable 
additivity of integrable sets since every E„ must also be 
integrable. 

Chapter 5 

1 . We prove that (i) implies (ii) implies (in) implies (iv) 
implies (i). 

Assume (i). Let G = ( - o o , a] and G' = (a, oo). Then 
f~l(G) = / - / _ 1 ( G ' ) . Since / " ' ( < ? ' ) is measurable ac-
cording to (i) the set f~\G) is also measurable. This 
establishes (ii). 

Assume (ii). Let G = ( - oo, a) and set Gn = (— oo, a — 
l/n]. Then \J^Gm = G a n d / " ' ( G ) = υ ϊ - ι Γ 1 ^ ) · By 
(ii) each / \G„) is measurable. Thus / (G) is also 
measurable and (iii) holds. 

Prove (iv) from (iii) like (ii) from (i). 
Deduce (i) from (iv) on the model of (iii) from (ii). 
Measurability of / obviously implies (i), hence all the 

others. Assume (i) through (iv). Then f~l(G) is 
measurable for every unbounded open interval. Since 
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(α, b) = (α, oo) - [b, oo) and / " ' ( ( a , b)) = / " ' ( ( « , oo)) -
/ _ 1 ( [ 6 , oo)), it follows from (i) and (ii) that / " ' ( G ) is 
measurable for bounded open intervals, too. Thus / is 
measurable. 

2. In R * let J„ = [- η, η) X · · · X [ - n , n). Partition 
each factor [-n, n) into n2" intervals of length 1 / 2 " - 1 . 
Let each subinterval be closed on the left and open on the 
right. Fo rm a partition 9„ of J„ by taking Cartesian 
products. (See Fig. 3, p . 144.) 

For each G e f „ the set /„ η f~\G) is a bounded 
measurable subset of / . Let Κ be the closed interval 
having the same faces as G. Then Κ has on its boundary a 
unique p o i n t y which is nearest to the origin. Set f„(x) =y 
for all χ in /„ Π f~\G). D o this for all G in This 
defines /„ on /„ Π f~\J„). Set / „ (x ) = 0 elsewhere. Then 
IΛ M l ** I /Ml f ° r ^ 1 x m ^ Since 9 n + l is a refinement of 
<Sn and /„ C 7 n + I , | / „ (JC ) | < | / n + 1 ( x ) | for all x. Moreover 
this construction produces a nonnegative func t ion / , when 
/ is nonnegative. 

The convergence of fn(x) to / ( x ) is proved as follows. 
Let χ ε / η R ' . There is nx such that χ e /„ a n d / ( x ) e 7 n 

when η > nx. Then / ( x ) is in some G of S j , . Since / „ (x ) 
belongs to the closed interval having the same faces as G , 
1/00 - / „ ( * ) ! <^/2n~1. Consequently, l i m ^ ^ / ^ x ) = / ( x ) . 

3 . Let £ = U"-.U~-.n*-m/*" 1«? n)- Let χ EE. 
Then χ e D ? - m / * ' ( G „ ) I o r some m and n. Consequent-
ly, fk(x) > a + l/n when k > m. Thus l i m ^ ^ / ^ x ) > 
a + l / n . F r o m this we see that χ e / ~ ' ( G ) . Thus £ C 
/-•(ο. 

Conversely, let xEf ' ( G ) . Fix η so that α + l/n < 
f{x). There is m such that / t ( x ) > a + l/n when k> m. 
Then χ e / * - ' ( G ) when k> m; i.e., χ e f | ? - J * _ ' ( G n ) . 

Consequently, χ EE. This completes the proof that 
/ " ' ( G ) C £ . Thus the sets are equal. 
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4. If one of / and g is a null function the same is true 
of fg. Then both sides of the inequality are zero. 

Suppose neither / nor g is a null function. Then 
J 7 | / | J > 0 and J / | g | ' > 0 . We can choose a positive 
constant c so that jj\cf\s = 1. In fact we need only have 
i - ' - J / l / f or Similarly, f,\kg\'=l 
when k 1 = (Jj\g\')l/>- Integration on both sides of 

Hence < c '/c ', as desired. 

Chapter 6 

1 . Some notation is needed. Suppose / C R^. Let the 
/•-fold integration be accomplished by expressing R ^ as 
J>, Χ P2 X · · · X PT with r < p. Write the intervals as 
products like this: / = / , Χ I2 X · · · X Ir where I} C Pj 
for 1 < j < r. 

We may assume 1—GOH. Since G and Η d o not 
overlap, there is an integer k such that Ij = Gj — Hj when 

j Φ k and GkU Hk = Ik with Gk and i / A nonoverlapping. 
For convenience denote iterated integrals as follows. 

When / < r let the result of the first / integrations over an 
interval J be 

p(J;xi+1,...,xr) 

\(cf)m\<\cfr/s+\kg\'/t 

yields 

Let v(J) be the result of the r-fold integration. 
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The equalities Ij = Gj = Hj when j < k imply 

v(I\ J c / + i , · · · , xr) = v(G\ x i + l , ...,xr) 

= v(H; xi+1,..., x r ) 

when ι < k. The additivity of integrals allows us to 
replace the second equality by summation when / = k. 
The result is either 

"(J; Xk+u ···,*,) = V(G> · · · . xr) 

+ v(H; x k + i , . . . ,xr) 

when k < r or, of course, v(I) = v(G) + if it 
happens that k = r. When k < r the linearity of 
integration applies in the last r — k integrations to yield 
the desired final conclusion that v(I) = v(G) + v(H). The 
equalities Ij = Gj = Hj for j = k + 1 , . . . , r must be used 
in these last r — k integrations. 

2. Since U can be expressed as a countable union of 
bounded sets, it is enough to give the solution for a 
bounded interval / . It is enough to show that there is a 
gauge γ on U such that 

| / ( ζ ) Μ ( / ) - φ ( 7 ) | < € Μ ( / ) 

when ζ GJ and / C γ (ζ ) . 
When ζ e U, the continuity of / at ζ implies that there 

is y(z) such that \f(x)- f(z)\ < c when xGl Π γ ( ζ ) . Let 
/ C / Π γ (ζ). On / consider the constant function g such 
that g(x) = f(z). The iterated integral of g over J has the 
value / ( z ) M ( / ) . Then <f>(7)- / ( z ) M ( 7 ) is the iterated 
integral of / - g. Since | / ( x ) - g (x ) | < e on / , repeated 
application of integral inequalities yields | φ ( / ) — / ( z ) 
• < eM(J). 

3 . The first step is to snow that the extension of / 
which is zero outside Ε has "an iterated integral over any 
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bounded interval. Actually, it is enough to work within 
/ = [a, b] X [c, d] where c < g(x) < h(x) < d for all χ in 
[a, b]. The order of integration will always be the same as 
this: 

The inner integral exists because, for fixed x, f(x,y) 
vanishes on [c, g(x)) and (A(x), d] and is continuous 
when restricted to [g(x), h(x)]. 

Let [r, s] C [c, d\. The outer integral exists if we show 
J'rf(x,y)dy is a continuous function of x. Thus it is 
appropriate to consider Js

rf(x,y) dy — Js

rf(u,y) dy, i.e., 
i'[f(x,y)—f(u,y)]dy. It is important to estimate this 
integrand. 

Let Kx = [r, s] Π [g(x), A(x)] for each χ in [a, b]. The 
uniform continuity o f / o n Ε implies that \f(x,y)-f(u,y)\ 
< € when \x — u\<8 and y e Kx Π A„. Since / is 
bounded, there is a constant Λ such that \f(x,y) — f(M,y)\ 

< A for all x, u, and 7 . Next note that f(x,y) — f(u,y) 
= 0 w h e n / is outside Kx U K^. Finally, note that the total 
length of the intervals making u p (Kx U ^ ) - (Kx Π Κγ) 
is n o more than | g(x) — g(u)\ + \h(x) — h(u)\. 

N o w suppose |x — u\ < 8. The estimates of the 
preceding paragraph give 

< tL(Kx Π K„) + A(\g(x) - g(u)\ + \h(x) - A(«) |) . 

Since L(KX Π KJ < d— c and g and A are continuous, 
the desired continuity of the inner integral follows. 

Now <f>(7) is meaningful on every J contained in / . Let 
G and Η be the graphs of g and A. Then / is continuous 
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on / - (G U H) and this set is ( / M - <f>)-nuU. W e know 
G U Η is Af-null. It is also φ-null since \<p(J)\ < AM(J) 

for every J. It follows that / is integrable on Ε and 

Chapter 7 

1 . Let A be the 9l-limit of /Δα(3) ) . Choose δ so that 
\A - /Δα(<3))| < c when | |Φ| | < δ. Fix a division f with 
H^l l < δ. Let Φ be a refinement of <5. Then < 
< δ. Hence \A - /Δα(<Φ)| < c. Therefore A is also the 
A - l i m i t οί/Δα(<ϊ)). 

Now assume A is the 91 -limit. T o show that A is the 
S-limit requires the use of a special gauge associated with 
a division. Fix a division f for which \A —/Δα(<ΐ>)[ < e 
when 3) is a refinement of 'S. Let γ ? be defined so that 
y9(z) contains no endpoint of 9 distinct from z. Let <>D be 
Y ¥-fine. Then every endpoint of *$ appears as tag of each 
interval of 3) which contains that endpoint. Fo rm S from 
<3) by replacing z[u, v] by z[u, z] and z[z, v] when 
u < ζ < υ. Then S is a refinement of ff. Moreover 
/Δα(<$) = / Δ α ( δ ) . Thus L4 - /Δα(<35)| = μ - / Δ α ( 8 ) | < c 
because of the choice of ff. 

2. It is enough to find γ for which | / Δ α ( Φ ) - / ^ Δ ^ ( Φ ) | 

< c for all γ-fine 3). F rom this statement and the triangle 
inequality we can deduce existence of both integrals from 
existence of either of them. 

Let En = {JC Ε [α, b] : η - Κ | / (JC ) | < η ) . These sets 
E„ cover [a, b] and are pairwise disjoint. Any division Φ 
falls into subsets <>D„ having tags in En. N o w | /Δα(3)„) -

fg^(%)\ < n\Aa - gAfi\(%). Thus it is our goal to 

define γ so that Σ / ι η Ι Δ α - g^fi\(^K) < c w n e n ^ is 
γ-fine. Henstock's lemma gets us to our goal. 
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Begin with gauges y„ on [a, b\ so that |/*g&j8 - gAP(fy)\ 
<e/(nq2"+l) when is γ,,-fine. When ζ e E„ set 
γ ( ζ ) = y„(z). Then D̂„ is γ,,-fine provided ^ is γ-fine. 
Thus | Δ α - ^ | ( Φ „ ) < 2 α £ / ( / ι σ 2 ' , + 1 ) and | / Δ α ( < Φ „ ) -
/ ^ Δ / 3 ( Φ η ) | < c /2" . Summation on η does the rest. 

3 . The step function / can be expressed as a linear 
combination of functions of the types considered in 
Example 3, p . 190, and Example 4, p . 190. The η open 
intervals give us functions gj such that gXx) = 1 when 
χ e.(Xj_lt Xj) and gy(jc) = 0 elsewhere. The n + 1 end-
points give us functions Ay such that hXxj) = 1 and 
hj(x) = 0 elsewhere. T h e n / = Σ " - ι * & + Σ ; -ο / (* / )Λ, · 

Part (a) follows immediately from linearity in the 
integrand and the results given in Examples 3 and 4. 

Part (b) can be done most easily from the definition. 
When has every Xj as a tag and at least one endpoint in 
each interval (Xj_ „ xj), the value of αΔ / (Φ) is precisely 
the expression given in (b). It suffices to define γ so that 
γ ( ζ ) contains no x} distinct from z. Then any γ-fine Φ has 
the properties named and the conclusion is immediate. 

4. The jumps in / occur on the left-hand side of the 
integer points. Consequently, from Exercise 3(b), j'0a df 
= Σ " - ι « ( * 7 )

 w h e n » < ί < η + 1. N o w /ο°α df exists if 
and only if l i m ^ ^ / O A df exists. Consequently, the 
existence of the integral is equivalent to convergence of 
ΣΤ-Mxj)- Moreover j > <//= Σ " - ι « ( * > 

5. Let a be the primitive F of Example 2, p . 79. Since 
this function is continuous, it is a regulated function. It 
was constructed so that it is not a function of bounded 
variation. 

Since ο is a primitive of a', a2/2 is also a primitive of 
αα ' and faaa' exists. It can be converted into J * A da. 

The failure of jafda to exist is the same as failure of 
existence of /*/<*'. Clearly, it is desirable that f(x) and 
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a'(x) have the same sign. The sign of a'(x) is alternately 
positive and negative in intervals (CQ, C, ) , ( C „ C 2 ) , . . ·, 
beginning with a positive value in (c 0 , c,). The value of a' 
on ( c n _ „ c „ ) is a „ / ( c n - c n _ , ) where ( « X . , is the 
sequence 1, — 1 / 2 , 1/2, - 1 / 3 , 1 / 3 , . . . . On [c„_,, c„) 
let / ( x ) = ft„ where ( 6 „ ) f _ i is the sequence 1, 
- 1/ln 2, 1/ln 2, - 1/ln 3, 1/ln 3 , . . . . Then Σ " - ι « Α 
is divergent. Since = Σ * - ι α * * * » ^ follows that 
Hm,^,bf'afa' does not exist. Consequently, / * / α ' and 
J * / d a do not exist. Finally, observe t h a t / i s regulated. I t 
clearly has one-sided limits at each point in [a, b). Since 
ϋ π ν ^ ο Α = 0 the left-hand limit of / at b is also zero. 

6. Let C = {c„ c2, c3,... } include all left-hand 
discontinuities of a, whether φ(ο„)Φ0 or not . Then 
Σ Β ° - Ι Φ ( ° Ι Ι ) is absolutely convergent and there is m such 
that *2k-m+i\<Kck)\ < c - ( W e m a y assume a g C.) 

When ζ = c„ choose γ ( ζ ) so that 

|φ(ζ) - ( α ( ζ ) - α ( « ) ) ( / ( ζ ) - / ( « ) ) | < € / 2 » 

for all u such that u < ζ and u e γ ( ζ ) . 
When ζ € C the function α is left-hand continuous at z. 

Thus there is γ ( ζ ) such that 

| ( a ( z ) - a ( « ) ) ( / ( z ) - / ( « ) ) | < c | / ( z ) - / ( « ) | 

when Μ < ζ and a G γ ( ζ ) . 
When ζ $ {c,, c 2 , . . . , c m } restrict γ ( ζ ) further so that 

γ ( ζ ) contains none of c „ c 2 , . . . , c m . 
Let Φ be γ-fine. Break Φ into three subsets. Put z[u,v] 

into 6 when ζ £ C, into 5" when ζ e C and w < z, and 
into § when ζ ε C but u = z. Let be the set of all η 
such that c„ is a tag in iF. Then {1, 2 , . . . , m} C £ . Recall 
that the third restriction on γ implies that each interval of 
3) which contains c„, η < m, has c„ as its tag. Whether Θ 
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contains one or two intervals to which c„ belongs, one of 
them does not have cn as its left endpoint since α φ c„. 

The definition of Φ implies that Φ(<?) = 0. Thus 

< φ ( 5 ) - Σ Φ ( θ | + |φ(δ)Ι 
ι ι - J I ne.K 

Σ <ΚΟ 
« « χ 

For each η Ε Κ there is exactly one z[u, ν] of f with 
ζ = c„. Thus |Φ(£) - Σ Η Ε * < Κ Ο Ι < Σ „ Ε W 2 " < €· Recall 
that / is a function of bounded variation. The choice of 
y(z) when z$C allows us to say that |Φ(δ)| < €|Δ/|(δ) 
<tVa

bf. Finally | Σ „ « Α < Κ Ο Ι < Σ " - « + . ΐ Φ ( Ο Ι < In 
summary 

Φ ί ^ , - Σ Φ ί Α ) < c ( 2 + K e

6 / ) . 

One more observation is needed to complete the proof. 
The set C was chosen to include all points where α is not 
left-hand continuous. The sum of the series Σ η ^ ι ^ / ι ) * s 

the same if some other sequence (c„)"„, is used so long as 
all points where φ is nonzero are included. Thus the 
proposition is true as stated. 

7. Suppose F has bounded variation on [a, b]. 
According to p . 223 the variation of F satisfies 

VbF = lim lim \F(b) - F(t)\. 

Since a has bounded variation on [a, t], we already know 
that Va-F = j'a\f(x)\dVa

xa. Moreover, hm„b\F(b) - F(t)\ 
= \im,^b\j

b f da\. But from p . 187 we see that this last 
limit is zero since Δα([ί , b]) = 0. F r o m the same source 
Sa\f(x)\dVa*a = ]iml^bia\f(x)\dVa*a since the variation 
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of a, like a, is defined on [a, ft). N o w / * \f(x)\ dVxa 
— VbF, as required. 

8. W e know that ftf° τ d(a ο τ) = / ; $ / * / « when 
υ < d. For convenience set g = f ° τ and β = a ° τ. Then 
β is continuous a t and lim p_ > dAj8([u, rf]) = 0. 
Consequently, existence of Jdgd0 is equivalent to 
existence of ton^ftgdfi and jd

cg dp = \imD^
v

cg dp. 
The existence of this limit can b e determined by 
examining lim^Jl^f da. Set F(x) = /*(c)/ da. Then F is 
continuous a t χ = r(d) since α is continuous there. The 
next point to note is that F ° τ is continuous a t d. Thus 

I ™ / * - l i m f ^ / A - l i m (Vgdp= f W 
• ' T ( C ) v-*dJr^c) v-*dJc Jc 

9. Let e = ft, < c, < ft2 < c 2 < · · · with l i m n ^ 0 0 6 „ 
= ft. For every η let a(ft„) = 0 and a(c„) = 2 /γ ίΓ . Let a be 
linear on the intervals [ft„, c„] and [c„, bn+l\. Finally, let 
a(ft) = 0. 

On the intervals [b„, c„] where α is increasing we will 
assign / positive values and on [c„, ftn+1] where α is 
decreasing / will be negative. T o be specific, let 
f(bn) = / (c„) = 0 for all n. At the midpoint of [b„, cn] l e t / 
have the value l/Jn . Midway between c„ and ftn+J l e t / 
have the value —l/Jn. Between these points let / be 
linear. Let /(ft) = 0. Then / is continuous on [a, ft]. 
Moreover / £ · / da = J%/a ' . O n (ft„, c„) the derivative a' is 
constant with value a(c„)/(cn — ft„). Moreover / £ / is the 
area of a triangle with altitude I/-fit and base c„ — b„. 
Thus jc

b" f da = \ / n. A similar analysis shows that 
l / n . 

Let a„(x) = a ( . t ) when 0 < χ < ft„ a n d α η ( χ ) = 0 when 
ft„ < χ < ft. Then a„ converges uniformly to a on [a, ft]. 
Moreover /* /</a„ =/*- /</« = 2 * ~ ' , 2 / f c . Consequently, 
n n ^ w / o / i f a n does not exist. 
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grals, 194 
as integrator, 194 
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Φ-null sets, 159 

Covering lemma, 143 
Cross product, 68, 227 
Curves 

equivalent, 215 
length of, 80 
opposite, 215 
parametric, 80, 214 

Degenerate intervals are M-null, 
108 
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convergence, 67 
gauge, 177 
generalized Riemann definition, 

18 
improper, 28 
inequalities, 49, 185 
iterated, see Iterated integral 
Lebesgue 2, 231, 234, 244 
line, 214 
linearity in integrand, 49, 183 
linearity in integrator, 184 
multiple, 31, 150 
norm, 177 
of Stieltjes type, see Stieltjes in-

tegral 
on an unbounded interval, 21 
on a path, 216 
on N, 36 
oriented, 58 
refinement, 177 
r-fold, 152 
Riemann definition, 8 
two-fold, ISO 
zero, 49, 105 

Integration 
component-by-component, 49 
of absolute values, 78 
of series of positive terms, 87 
of series term-by-term, 37, 87, 

112 

on closed, bounded sets, 117 
on differences of sets, 114 

on expanding sequences, 118 
on non-interval sets, 34, 113 

Integration by parts, 50 
correction term, 197 
for gauge integral, 199 
for norm integral, 196 
for refinement integral, 196 
for Riemann integral, 195 
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component-by-component inte-

gration, 184 
continuity of, 188 
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