AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Discrete Painlevé Equations
About this Title
Nalini Joshi, University of Sydney, Sydney, Australia
Publication: CBMS Regional Conference Series in Mathematics
Publication Year:
2019; Volume 131
ISBNs: 978-1-4704-5038-0 (print); 978-1-4704-5235-3 (online)
DOI: https://doi.org/10.1090/cbms/131
MathSciNet review: MR3931704
MSC: Primary 39A30; Secondary 14E07, 14E15, 32S45, 33E17, 34M55, 39A12
Table of Contents
Download chapters as PDF
Front/Back Matter
Chapters
- Introduction
- A dynamical systems approach
- Initial value spaces
- Foliated initial value spaces
- Cremona mappings
- Asymptotic analysis
- Lax pairs
- Riemann-Hilbert problems
- Foliations and vector bundles
- Projective spaces
- Reflection groups
- Lists of discrete-Painlevé equations
- Asymptotics of discrete equations
- Shreeram S. Abhyankar, Historical ramblings in algebraic geometry and related algebra, Amer. Math. Monthly 83 (1976), no. 6, 409–448. MR 401754, DOI 10.2307/2318338
- M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378, DOI 10.1017/CBO9780511623998
- Maria Alberich-Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002. MR 1874328, DOI 10.1007/b82933
- C. Raymond Adams, On the linear ordinary $q$-difference equation, Ann. of Math. (2) 30 (1928/29), no. 1-4, 195–205. MR 1502876, DOI 10.2307/1968274
- M. J. Ablowitz, R. Halburd, and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), no. 3, 889–905. MR 1759006, DOI 10.1088/0951-7715/13/3/321
- Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. MR 450815, DOI 10.1002/sapm1974534249
- G.E. Andrews. q-Hypergeometric and Related Functions, chapter 17. In DLMF \cite{DLMF}, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- R. Askey and R. Roy. Gamma Function, chapter 5. In DLMF \cite{DLMF}, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- M. J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuovo Cimento (2) 23 (1978), no. 9, 333–338. MR 513779
- M. J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. I, J. Math. Phys. 21 (1980), no. 4, 715–721. MR 565716, DOI 10.1063/1.524491
- M. J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. II, J. Math. Phys. 21 (1980), no. 5, 1006–1015. MR 574872, DOI 10.1063/1.524548
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
- Mark J. Ablowitz and Harvey Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), no. 20, 1103–1106. MR 442981, DOI 10.1103/PhysRevLett.38.1103
- Mark J. Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. MR 642018
- James Atkinson, Phil Howes, Nalini Joshi, and Nobutaka Nakazono, Geometry of an elliptic difference equation related to Q4, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 763–784. MR 3509963, DOI 10.1112/jlms/jdw020
- H. F. Baker, Principles of geometry. Volume 2. Plane geometry, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010. Reprint of the 1922 original. MR 2857757, DOI 10.1017/CBO9780511718298.009
- George D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), no. 2, 243–284. MR 1500888, DOI 10.1090/S0002-9947-1911-1500888-5
- G. D. Birkhoff. The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations. Proceedings of the American Academy of Arts and Sciences, 49(9): 521–568, 1913.
- Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. MR 538168
- Alexei Borodin, Isomonodromy transformations of linear systems of difference equations, Ann. of Math. (2) 160 (2004), no. 3, 1141–1182. MR 2144976, DOI 10.4007/annals.2004.160.1141
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1349, Hermann, Paris, 1972. MR 0573068
- W. Burnside. Theory of Groups of Finite Order. Cambridge University Press, 1911.
- M. P. Bellon and C.-M. Viallet, Algebraic entropy, Comm. Math. Phys. 204 (1999), no. 2, 425–437. MR 1704282, DOI 10.1007/s002200050652
- Jeanne Le Caine, The linear $q$-difference equation of the second order, Amer. J. Math. 65 (1943), 585–600. MR 8889, DOI 10.2307/2371867
- R. D. Carmichael, Linear difference equations and their analytic solutions, Trans. Amer. Math. Soc. 12 (1911), no. 1, 99–134. MR 1500883, DOI 10.1090/S0002-9947-1911-1500883-6
- R. D. Carmichael, The General Theory of Linear $q$-Difference Equations, Amer. J. Math. 34 (1912), no. 2, 147–168. MR 1506145, DOI 10.2307/2369887
- Clio Cresswell and Nalini Joshi, The discrete first, second and thirty-fourth Painlevé hierarchies, J. Phys. A 32 (1999), no. 4, 655–669. MR 1671841, DOI 10.1088/0305-4470/32/4/009
- S. J. Chapman, J. R. King, and K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1978, 2733–2755. MR 1650775, DOI 10.1098/rspa.1998.0278
- P. A. Clarkson. Painlevé Transcendents, chapter 32. In DLMF \cite{DLMF}, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297–310. MR 286771, DOI 10.4064/aa-18-1-297-310
- Christopher M. Cosgrove and George Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Stud. Appl. Math. 88 (1993), no. 1, 25–87. MR 1194166, DOI 10.1002/sapm199388125
- P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1677884
- J. J. Duistermaat and N. Joshi, Okamoto’s space for the first Painlevé equation in Boutroux coordinates, Arch. Ration. Mech. Anal. 202 (2011), no. 3, 707–785. MR 2854669, DOI 10.1007/s00205-011-0437-8
- NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.20 of 2018-09-15, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- Johannes J. Duistermaat, Discrete integrable systems, Springer Monographs in Mathematics, Springer, New York, 2010. QRT maps and elliptic surfaces. MR 2683025, DOI 10.1007/978-0-387-72923-7
- T.M. Dunster. Legendre and Related Functions, chapter 14. In DLMF \cite{DLMF}, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- Patrick du Val, On the Kantor Group of a Set of Points in a Plane, Proc. London Math. Soc. (2) 42 (1936), no. 1, 18–51. MR 1577027, DOI 10.1112/plms/s2-42.1.18
- A. S. Fokas and M. J. Ablowitz, Linearization of the Korteweg-de Vries and Painlevé $\textrm {II}$ equations, Phys. Rev. Lett. 47 (1981), no. 16, 1096–1100. MR 630505, DOI 10.1103/PhysRevLett.47.1096
- A. S. Fokas, A. R. It⋅s, and A. V. Kitaev, Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), no. 2, 313–344. MR 1137067
- K. O. Friedrichs. Special topics in analysis. Lecture Notes. New York University, 1953.
- R. Fuchs. Sur quelques équations différentielles linéaires du second ordre. Comptes Rendus de l’Academie des Sciences Paris, 141:555–558, 1905.
- U. Fulton, Teoriya peresecheniĭ , “Mir”, Moscow, 1989 (Russian). Translated from the English and with a foreword by V. I. Danilov. MR 1024784
- R. Gerard, Geometric theory of differential equations in the complex domain, Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975) Internat. Atomic Energy Agency, Vienna, 1976, pp. 269–308. MR 0488082
- Raymond Gérard, La géométrie des transcendantes de P. Painlevé, Mathematics and physics (Paris, 1979/1982) Progr. Math., vol. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 323–352 (French). MR 728428
- H. Galbrun, Sur la représentation des solutions d’une équation linéaire aux différences finies pour les grandes valeurs de la variable, Acta Math. 36 (1913), no. 1, 1–68 (French). MR 1555083, DOI 10.1007/BF02422377
- B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes, Acta Math. 33 (1910), no. 1, 1–55 (French). MR 1555055, DOI 10.1007/BF02393211
- C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Method for solving the Korteweg-deVries equation. Physical Review Letters, 19:1095–1097, Nov 1967.
- Clifford S. Gardner, John M. Greene, Martin D. Kruskal, and Robert M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133. MR 336122, DOI 10.1002/cpa.3160270108
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- David J. Gross and Alexander A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), no. 2, 127–130. MR 1031944, DOI 10.1103/PhysRevLett.64.127
- Phillip A. Griffiths, Introduction to algebraic curves, Translations of Mathematical Monographs, vol. 76, American Mathematical Society, Providence, RI, 1989. Translated from the Chinese by Kuniko Weltin. MR 1013999, DOI 10.1090/mmono/076
- B. Grammaticos, A. Ramani, and V. Papageorgiou, Do integrable mappings have the Painlevé property?, Phys. Rev. Lett. 67 (1991), no. 14, 1825–1828. MR 1125950, DOI 10.1103/PhysRevLett.67.1825
- Raymond Gérard and Antoinette Sec, Feuilletages de Painlevé, Bull. Soc. Math. France 100 (1972), 47–72 (French). MR 306552
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Herwig Hauser, The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand), Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 3, 323–403. MR 1978567, DOI 10.1090/S0273-0979-03-00982-0
- J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016. MR 3587455, DOI 10.1017/CBO9781107337411
- W. A. Harris Jr. and Y. Sibuya, Note on linear difference equations, Bull. Amer Math. Soc. 70 (1964), 123–127. MR 0157140, DOI 10.1090/S0002-9904-1964-11047-8
- Aimo Hinkkanen and Ilpo Laine, Solutions of the first and second Painlevé equations are meromorphic, J. Anal. Math. 79 (1999), 345–377. MR 1749318, DOI 10.1007/BF02788247
- Po-Fang Hsieh and Yasutaka Sibuya, Basic theory of ordinary differential equations, Universitext, Springer-Verlag, New York, 1999. MR 1697415, DOI 10.1007/978-1-4612-1506-6
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Jarmo Hietarinta and Claude Viallet, Searching for integrable lattice maps using factorization, J. Phys. A 40 (2007), no. 42, 12629–12643. MR 2392894, DOI 10.1088/1751-8113/40/42/S09
- Geertrui K. Immink, Asymptotics of analytic difference equations, Lecture Notes in Mathematics, vol. 1085, Springer-Verlag, Berlin, 1984. MR 765699, DOI 10.1007/BFb0100174
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- Nalini Joshi, Damien Burtonclay, and Rodney G. Halburd, Nonlinear nonautonomous discrete dynamical systems from a general discrete isomonodromy problem, Lett. Math. Phys. 26 (1992), no. 2, 123–131. MR 1193633, DOI 10.1007/BF00398809
- Nalini Joshi and Martin D. Kruskal, A direct proof that solutions of the six Painlevé equations have no movable singularities except poles, Stud. Appl. Math. 93 (1994), no. 3, 187–207. MR 1298423, DOI 10.1002/sapm1994933187
- N. Joshi and C. J. Lustri, Stokes phenomena in discrete Painlevé I, Proc. A. 471 (2015), no. 2177, 20140874, 22. MR 3348378, DOI 10.1098/rspa.2014.0874
- N. Joshi, C. J. Lustri, and S. Luu, Stokes phenomena in discrete Painlevé II, Proc. A. 473 (2017), no. 2198, 20160539, 20. MR 3621486, DOI 10.1098/rspa.2016.0539
- N. Joshi, C.J. Lustri, and S. Luu, Nonlinear $q$-Stokes phenomena for $q$-Painlevé I, Journal of Physics A: Mathematical and Theoretical 52 (2019), no. 6, DOI 10.1088/1751-8121/aaf77c.
- Michio Jimbo and Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), no. 3, 407–448. MR 625446, DOI 10.1016/0167-2789(81)90021-X
- Michio Jimbo and Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Phys. D 4 (1981/82), no. 1, 26–46. MR 636469, DOI 10.1016/0167-2789(81)90003-8
- Nalini Joshi and Nobutaka Nakazono, Lax pairs of discrete Painlevé equations: $(A_2+A_1)^{(1)}$ case, Proc. A. 472 (2016), no. 2196, 20160696, 14. MR 3597921, DOI 10.1098/rspa.2016.0696
- Nalini Joshi and Nobutaka Nakazono, Elliptic Painlevé equations from next-nearest-neighbor translations on the $E^{(1)}_8$ lattice, J. Phys. A 50 (2017), no. 30, 305205, 17. MR 3673467, DOI 10.1088/1751-8121/aa7915
- N. Joshi, N. Nakazono, and Y. Shi. Reflection groups and discrete integrable systems. Journal of Integrable Systems, 1(1):1–37, 2016.
- Nalini Joshi, A local asymptotic analysis of the discrete first Painlevé equation as the discrete independent variable approaches infinity, Methods Appl. Anal. 4 (1997), no. 2, 124–133. Dedicated to Martin David Kruskal. MR 1603106, DOI 10.4310/MAA.1997.v4.n2.a2
- Nalini Joshi, Quicksilver solutions of a $q$-difference first Painlevé equation, Stud. Appl. Math. 134 (2015), no. 2, 233–251. MR 3313454, DOI 10.1111/sapm.12066
- Michio Jimbo and Hidetaka Sakai, A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), no. 2, 145–154. MR 1403067, DOI 10.1007/BF00398316
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- M. D. Kruskal. Asymptotology. in Mathematical Models in Physical Sciences, Dobrot, S., ed. Prentice-Hall, Englewood Cliffs, New Jersey (1963) 17–48.
- Martin D. Kruskal and Peter A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for integrability, Stud. Appl. Math. 86 (1992), no. 2, 87–165. MR 1140912, DOI 10.1002/sapm199286287
- J. R. King and S. J. Chapman, Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations, European J. Appl. Math. 12 (2001), no. 4, 433–463. MR 1852310, DOI 10.1017/S095679250100434X
- M. D. Kruskal, N. Joshi, and R. Halburd, Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property, Integrability of nonlinear systems (Pondicherry, 1996) Lecture Notes in Phys., vol. 495, Springer, Berlin, 1997, pp. 171–205. MR 1636294, DOI 10.1007/BFb0113696
- Kenji Kajiwara, Tetsu Masuda, Masatoshi Noumi, Yasuhiro Ohta, and Yasuhiko Yamada, ${}_{10}E_9$ solution to the elliptic Painlevé equation, J. Phys. A 36 (2003), no. 17, L263–L272. MR 1984002, DOI 10.1088/0305-4470/36/17/102
- Kenji Kajiwara, Nobutaka Nakazono, and Teruhisa Tsuda, Projective reduction of the discrete Painlevé system of type $(A_2+A_1)^{(1)}$, Int. Math. Res. Not. IMRN 4 (2011), 930–966. MR 2773334, DOI 10.1093/imrn/rnq089
- Kenji Kajiwara, Masatoshi Noumi, and Yasuhiko Yamada, A study on the fourth $q$-Painlevé equation, J. Phys. A 34 (2001), no. 41, 8563–8581. MR 1876614, DOI 10.1088/0305-4470/34/41/312
- Kenji Kajiwara, Masatoshi Noumi, and Yasuhiko Yamada, Geometric aspects of Painlevé equations, J. Phys. A 50 (2017), no. 7, 073001, 164. MR 3609039, DOI 10.1088/1751-8121/50/7/073001
- M. D. Kruskal, K. M. Tamizhmani, B. Grammaticos, and A. Ramani, Asymmetric discrete Painlevé equations, Regul. Chaotic Dyn. 5 (2000), no. 3, 273–280. MR 1789477, DOI 10.1070/rd2000v005n03ABEH000149
- E. Laguerre. Sur la réduction en fractions continues d’une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels. Journal de Mathématiques Pures et Appliquées, 1:135–166, 1885.
- Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
- Peter D. Lax, Almost periodic solutions of the KdV equation, SIAM Rev. 18 (1976), no. 3, 351–375. MR 404889, DOI 10.1137/1018074
- Solomon Lefschetz, Differential equations: Geometric theory, 2nd ed., Pure and Applied Mathematics, Vol. VI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0153903
- R.C Lyness. Cycles. The Mathematical Gazette, 26:62, 1942. Note 1581.
- R.C Lyness. Cycles. The Mathematical Gazette, 29:231–233, 1945. Note 1847.
- B. Malgrange. Déformations isomonodromiques des singularités régulières. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 31:1–26, 1983.
- E.M. McMillan. A problem in the stability of periodic systems, In E.E Brittin and H. Odabasi, editors, Topics in Modern Physics, a Tribute to E. V. Condon, pages 219–244. Colorado Assoc. Univ. Press, Boulder, 1971.
- A. V. Mikhailov (ed.), Integrability, Lecture Notes in Physics, vol. 767, Springer-Verlag, Berlin, 2009. MR 2868499, DOI 10.1007/978-3-540-88111-7
- L.M. Milne-Thomson, The Calculus of Finite Differences, Chelsea Publishing Company, 2000.
- J. Milnor. Foliations and foliated vector bundles, mimeographed notes. Institute for Advanced Study, Princeton, 1970.
- Michio Jimbo, Tetsuji Miwa, and Kimio Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function, Phys. D 2 (1981), no. 2, 306–352. MR 630674, DOI 10.1016/0167-2789(81)90013-0
- H. P. Mulholland and C. A. B. Smith, An inequality arising in genetical theory, Amer. Math. Monthly 66 (1959), 673–683. MR 110721, DOI 10.2307/2309342
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Mikio Murata, New expressions for discrete Painlevé equations, Funkcial. Ekvac. 47 (2004), no. 2, 291–305. MR 2108677, DOI 10.1619/fesi.47.291
- Mikio Murata, Lax forms of the $q$-Painlevé equations, J. Phys. A 42 (2009), no. 11, 115201, 17. MR 2485835, DOI 10.1088/1751-8113/42/11/115201
- A. M. Nīkolaĭčuk and I. M. Spītkovs′kiĭ, Factorization of Hermitian matrix-valued functions, and its applications to boundary value problems, Ukrain. Mat. Ž. 27 (1975), no. 6, 767–779, 861 (Russian). MR 0409839
- Keiji Nishioka, A note on the transcendency of Painlevé’s first transcendent, Nagoya Math. J. 109 (1988), 63–67. MR 931951, DOI 10.1017/S0027763000002762
- Seiji Nishioka, Transcendence of solutions of $q$-Painlevé equation of type $A^{(1)}_7$, Aequationes Math. 79 (2010), no. 1-2, 1–12. MR 2640274, DOI 10.1007/s00010-010-0007-4
- N. E. Nörlund, Sur les équations linéaires aux differences finies à coefficients rationnels, Acta Math. 40 (1916), no. 1, 191–249 (French). MR 1555137, DOI 10.1007/BF02418545
- Masatoshi Noumi, Painlevé equations through symmetry, Translations of Mathematical Monographs, vol. 223, American Mathematical Society, Providence, RI, 2004. Translated from the 2000 Japanese original by the author. MR 2044201, DOI 10.1090/mmono/223
- Masatoshi Noumi and Yasuhiko Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials, Nagoya Math. J. 153 (1999), 53–86. MR 1684551, DOI 10.1017/S0027763000006899
- Y. Ohta, A. Ramani, and B. Grammaticos, An affine Weyl group approach to the eight-parameter discrete Painlevé equation, J. Phys. A 34 (2001), no. 48, 10523–10532. Symmetries and integrability of difference equations (Tokyo, 2000). MR 1877472, DOI 10.1088/0305-4470/34/48/316
- Kazuo Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.) 5 (1979), no. 1, 1–79 (French). MR 614694, DOI 10.4099/math1924.5.1
- Kazuo Okamoto, Studies on the Painlevé equations. IV. Third Painlevé equation $P_{\textrm {III}}$, Funkcial. Ekvac. 30 (1987), no. 2-3, 305–332. MR 927186
- Kazuo Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{\textrm {II}}$ and $P_{\textrm {IV}}$, Math. Ann. 275 (1986), no. 2, 221–255. MR 854008, DOI 10.1007/BF01458459
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- Christopher M. Ormerod and Eric Rains, A symmetric difference-differential Lax pair for Painlevé VI, J. Integrable Syst. 2 (2017), no. 1, xyx003, 20. MR 3691966, DOI 10.1093/integr/xyx003
- P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 25 (1902), no. 1, 1–85 (French). MR 1554937, DOI 10.1007/BF02419020
- P. Painlevé. Sur les équations différentielles du second ordre á points critiques fixes. Comptes Rendus de l’Academie des Sciences Paris, 143:1111–1117, 1906.
- V. G. Papageorgiou, F. W. Nijhoff, B. Grammaticos, and A. Ramani, Isomonodromic deformation problems for discrete analogues of Painlevé equations, Phys. Lett. A 164 (1992), no. 1, 57–64. MR 1162062, DOI 10.1016/0375-9601(92)90905-2
- E. Picard. Mémoire sur la théorie des fonctions algébriques de deux variables. Journal de Mathématiques pures et appliquées, 5:135–320, 1889.
- Roger Penrose and Cedric A. B. Smith, A quadratic mapping with invariant cubic curve, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 89–105. MR 591975, DOI 10.1017/S0305004100057972
- V. Periwal and D. Shevitz. Unitary-matrix models as exactly solvable string theories. Physical review letters, 64(12):1326, 1990.
- G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson, Integrable mappings and soliton equations, Phys. Lett. A 126 (1988), no. 7, 419–421. MR 924318, DOI 10.1016/0375-9601(88)90803-1
- G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson, Integrable mappings and soliton equations. II, Phys. D 34 (1989), no. 1-2, 183–192. MR 982386, DOI 10.1016/0167-2789(89)90233-9
- E. Rains. Generalized Hitchin systems on rational surfaces. arXiv preprint arXiv:1307/4033v2, 2016.
- A. Ramani, A. S. Carstea, and B. Grammaticos, On the non-autonomous form of the $Q_4$ mapping and its relation to elliptic Painlevé equations, J. Phys. A 42 (2009), no. 32, 322003, 8. MR 2525848, DOI 10.1088/1751-8113/42/32/322003
- A. Ramani, A. S. Carstea, B. Grammaticos, and Y. Ohta, On the autonomous limit of discrete Painlevé equations, Phys. A 305 (2002), no. 3-4, 437–444. MR 1928121, DOI 10.1016/S0378-4371(01)00619-7
- A. Ramani and B. Grammaticos, Discrete Painlevé equations: coalescences, limits and degeneracies, Phys. A 228 (1996), no. 1-4, 160–171. MR 1399286, DOI 10.1016/0378-4371(95)00439-4
- A. Ramani, B. Grammaticos, and J. Hietarinta, Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), no. 14, 1829–1832. MR 1125951, DOI 10.1103/PhysRevLett.67.1829
- Jean-Pierre Ramis, Jacques Sauloy, and Changgui Zhang, Local analytic classification of $q$-difference equations, Astérisque 355 (2013), vi+151 (English, with French summary). MR 3185985
- W.P. Reinhardt and P.L. Walker. Theta Functions, chapter 20. In DLMF \cite{DLMF}, 2018. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- Hidetaka Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), no. 1, 165–229. MR 1882403, DOI 10.1007/s002200100446
- Hidetaka Sakai, Problem: discrete Painlevé equations and their Lax forms, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, pp. 195–208. MR 2310030
- Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833
- J. Shohat, A differential equation for orthogonal polynomials, Duke Math. J. 5 (1939), no. 2, 401–417. MR 1546133, DOI 10.1215/S0012-7094-39-00534-X
- P.A.G. Scheuer and S.P.H. Mandel. An inequality in population genetics. Heredity, 13:519–524, 1959.
- Tomoyuki Takenawa, Weyl group symmetry of type $D^{(1)}_5$ in the $q$-Painlevé V equation, Funkcial. Ekvac. 46 (2003), no. 1, 173–186. MR 1996297, DOI 10.1619/fesi.46.173
- W. J. Trjitzinsky, Analytic theory of linear $q$-difference equations, Acta Math. 61 (1933), no. 1, 1–38. MR 1555369, DOI 10.1007/BF02547785
- Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174. MR 1257246
- Hiroshi Umemura, Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125–171. MR 1044939, DOI 10.1017/S0027763000001835
- Hiroshi Umemura and Humihiko Watanabe, Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151–198. MR 1492945, DOI 10.1017/S0027763000006486
- Hiroshi Umemura and Humihiko Watanabe, Solutions of the third Painlevé equation. I, Nagoya Math. J. 151 (1998), 1–24. MR 1650348, DOI 10.1017/S0027763000025149
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, Inc., New York, 1987. Reprint of the 1976 edition. MR 919406
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- N. J. Zabusky and M. D. Kruskal. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Physical Review Letters, 15:240–243, 1965.