
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Tensors: Asymptotic Geometry and Developments 2016–2018
About this Title
J.M. Landsberg, Texas A&M University, College Station, TX
Publication: CBMS Regional Conference Series in Mathematics
Publication Year:
2019; Volume 132
ISBNs: 978-1-4704-5136-3 (print); 978-1-4704-5291-9 (online)
DOI: https://doi.org/10.1090/cbms/132
MathSciNet review: MR3966415
MSC: Primary 14L30; Secondary 14L24, 15A69, 68R05, 81P45
Table of Contents
Download chapters as PDF
Front/Back Matter
Basics
Tensors via linear algebra
The asymptotic geometry of tensors
- Detour into probability and information theory
- Strassen’s laser method and spectral theory
- Quantum mechanics for quantum information theory
- Quantum information theory and the asymptotic geometry of tensors
- Moment maps and moment polytopes
- Hints and answers to selected exercises
- Scott Aaronson, Quantum computing since Democritus, Cambridge University Press, Cambridge, 2013. MR 3058839, DOI 10.1017/CBO9780511979309
- Sanjeev Arora and Boaz Barak, Computational complexity, Cambridge University Press, Cambridge, 2009. A modern approach. MR 2500087, DOI 10.1017/CBO9780511804090
- Andris Ambainis, Yuval Filmus, and François Le Gall, Fast matrix multiplication: limitations of the Coppersmith-Winograd method (extended abstract), STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing, ACM, New York, 2015, pp. 585–593. MR 3388238
- Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman, Tensor rank: some lower and upper bounds, 26th Annual IEEE Conference on Computational Complexity, IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 283–291. MR 3025382
- Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki, Valence bond ground states in isotropic quantum antiferromagnets, Comm. Math. Phys. 115 (1988), no. 3, 477–528. MR 931672
- Huzihiro Araki and Elliott H. Lieb, Entropy inequalities, Comm. Math. Phys. 18 (1970), 160–170. MR 266563
- Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767–792. MR 2452824, DOI 10.1090/S0002-9947-08-04725-9
- J. Alman and V. Vassilevska Williams, Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication, ArXiv e-prints (2018).
- Josh Alman and Virginia Vassilevska Williams, Further limitations of the known approaches for matrix multiplication, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 25, 15. MR 3761761
- Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53 (1996), 2046–2052.
- Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Eric Naslund, William F. Sawin, and Chris Umans, On cap sets and the group-theoretic approach to matrix multiplication, Discrete Anal. , posted on (2017), Paper No. 3, 27. MR 3631613, DOI 10.19086/da.1245
- F. G. S. L. Brandao, M. Christandl, A. W. Harrow, and M. Walter, The Mathematics of Entanglement, ArXiv e-prints (2016).
- Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig. MR 1440179, DOI 10.1007/978-3-662-03338-8
- J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1 (1964), no. 3, 195–200. MR 3790629, DOI 10.1103/PhysicsPhysiqueFizika.1.195
- Alessandra Bernardi, Alessandro Gimigliano, and Monica Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), no. 1, 34–53. MR 2736357, DOI 10.1016/j.jsc.2010.08.001
- Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson, Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 24, 20. MR 3761760
- Grey Ballard, Christian Ikenmeyer, J.M. Landsberg, and Nick Ryder, The geometry of rank decompositions of matrix multiplication ii: $3\times 3$ matrices, to appear in JPAA.
- D. Bini, Relations between exact and approximate bilinear algorithms. Applications, Calcolo 17 (1980), no. 1, 87–97. MR 605920, DOI 10.1007/BF02575865
- Garrett Birkhoff, Three observations on linear algebra, Univ. Nac. Tucumán. Revista A. 5 (1946), 147–151 (Spanish). MR 0020547
- Markus Bläser and Vladimir Lysikov, On degeneration of tensors and algebras, 41st International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 58, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, pp. Art. No. 19, 11. MR 3578455
- Markus Bläser, Complete problems for Valiant’s class of qp-computable families of polynomials, Computing and combinatorics (Guilin, 2001) Lecture Notes in Comput. Sci., vol. 2108, Springer, Berlin, 2001, pp. 1–10. MR 1935355, DOI 10.1007/3-540-44679-6_{1}
- Markus Bläser, Fast matrix multiplication, Graduate Surveys, no. 5, Theory of Computing Library, 2013.
- Markus Bläser, Explicit tensors, Perspectives in Computational Complexity, Springer, 2014, pp. 117–130.
- Dario Bini, Grazia Lotti, and Francesco Romani, Approximate solutions for the bilinear form computational problem, SIAM J. Comput. 9 (1980), no. 4, 692–697. MR 592760, DOI 10.1137/0209053
- Michael Ben-Or and Richard Cleve, Computing algebraic formulas using a constant number of registers, SIAM J. Comput. 21 (1992), no. 1, 54–58. MR 1148816, DOI 10.1137/0221006
- Michel Brion, Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 177–192 (French). MR 932055, DOI 10.1007/BFb0078526
- Emmanuel Briand, Amarpreet Rattan, and Mercedes Rosas, On the growth of Kronecker coefficients, Sém. Lothar. Combin. 78B (2017), Art. 70, 12 (English, with English and French summaries). MR 3678652
- Vladimir P. Burichenko, Symmetries of matrix multiplication algorithms. I, CoRR abs/1508.01110 (2015).
- Shawn X. Cui, Michael H. Freedman, Or Sattath, Richard Stong, and Greg Minton, Quantum max-flow/min-cut, J. Math. Phys. 57 (2016), no. 6, 062206, 18. MR 3513725, DOI 10.1063/1.4954231
- Danny Calegari, Michael H. Freedman, and Kevin Walker, Positivity of the universal pairing in 3 dimensions, J. Amer. Math. Soc. 23 (2010), no. 1, 107–188. MR 2552250, DOI 10.1090/S0894-0347-09-00642-0
- Matthias Christandl, Fulvio Gesmundo, and Asger Kjæ rulff Jensen, Border rank is not multiplicative under the tensor product, arXiv:1801.04852.
- A. Conner, F. Gesmundo, J. M. Landsberg, E. Ventura, and Y. Wang, A geometric study of Strassen’s asymptotic rank conjecture and its variants, ArXiv e-prints arXiv:1811.05511 (2018).
- Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254–1279. MR 2447451, DOI 10.1137/060661569
- Austin Conner, Fulvio Gesmundo, J.M. Landsberg, and Emanuele Ventura, Kronecker powers of tensors with symmetry, preprint.
- —, Tensors with maximal symmetries, preprint.
- Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and Giorgio Ottaviani, Polynomials and the exponent of matrix multiplication, Bull. Lond. Math. Soc. 50 (2018), no. 3, 369–389. MR 3829726, DOI 10.1112/blms.12147
- Matthias Christandl, Aram W. Harrow, and Graeme Mitchison, Nonzero Kronecker coefficients and what they tell us about spectra, Comm. Math. Phys. 270 (2007), no. 3, 575–585. MR 2276458, DOI 10.1007/s00220-006-0157-3
- John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23 (1969), 880–884.
- Luca Chiantini, Christian Ikenmeyer, J. M. Landsberg, and Giorgio Ottaviani, The geometry of rank decompositions of matrix multiplication I: $2\times 2$ matrices, Exper. Math., to appear abs/1610.08364 (2016).
- Matthias Christandl and Graeme Mitchison, The spectra of quantum states and the Kronecker coefficients of the symmetric group, Comm. Math. Phys. 261 (2006), no. 3, 789–797. MR 2197548, DOI 10.1007/s00220-005-1435-1
- A. Conner, A rank 18 Waring decomposition of $sM\_{\langle 3\rangle }$ with 432 symmetries, ArXiv e-prints, to appear in Exper. Math. (2017).
- Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl. 35 (2014), no. 4, 1265–1287. MR 3270978, DOI 10.1137/140961389
- H Cohn and C. Umans, A group theoretic approach to fast matrix multiplication, Proceedings of the 44th annual Symposium on Foundations of Computer Science (2003), no. 2, 438–449.
- Matthias Christandl, Péter Vrana, and Jeroen Zuiddam, Universal points in the asymptotic spectrum of tensors, STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2018, pp. 289–296. MR 3826254, DOI 10.1145/3188745.3188766
- Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280. MR 1056627, DOI 10.1016/S0747-7171(08)80013-2
- Matthias Christandl and Andreas Winter, “Squashed entanglement”: an additive entanglement measure, J. Math. Phys. 45 (2004), no. 3, 829–840. MR 2036165, DOI 10.1063/1.1643788
- Matthew J. Donald, MichałHorodecki, and Oliver Rudolph, The uniqueness theorem for entanglement measures, J. Math. Phys. 43 (2002), no. 9, 4252–4272. Quantum information theory. MR 1924435, DOI 10.1063/1.1495917
- Harm Derksen and Visu Makam, On non-commutative rank and tensor rank, Linear Multilinear Algebra 66 (2018), no. 6, 1069–1084. MR 3781583, DOI 10.1080/03081087.2017.1337058
- P. Elias, A. Feinstein, and C. E. Shannon, A note on the maximum flow through a network, IRE. Transactions on Information Theory 2,4 (1956), 117–119.
- Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson, Barriers for rank methods in arithmetic complexity, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 1, 19. MR 3761737
- J. Eisert, Entanglement and tensor network states, Autumn School on Correlated Electrons: Emergent Phenomena in Correlated Matter Jülich, Germany, 23-27. September 2013, 2013.
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935), 777–780.
- P. Erdös, On an elementary proof of some asymptotic formulas in the theory of partitions, Ann. of Math. (2) 43 (1942), 437–450. MR 6749, DOI 10.2307/1968802
- P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294. MR 19911, DOI 10.1090/S0002-9904-1947-08785-1
- L. R. Ford Jr. and D. R. Fulkerson, Maximal flow through a network, Canadian J. Math. 8 (1956), 399–404. MR 79251, DOI 10.4153/CJM-1956-045-5
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- M. Fannes, B. Nachtergaele, and R. F. Werner, Valence bond states on quantum spin chains as ground states with spectral gap, J. Phys. A 24 (1991), no. 4, L185–L190. MR 1104168
- M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely correlated states on quantum spin chains, Comm. Math. Phys. 144 (1992), no. 3, 443–490. MR 1158756
- Marc Fortin and Christophe Reutenauer, Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank, Sém. Lothar. Combin. 52 (2004/07), Art. B52f, 12. MR 2123060
- Matthias Franz, Moment polytopes of projective $G$-varieties and tensor products of symmetric group representations, J. Lie Theory 12 (2002), no. 2, 539–549. MR 1923785
- Maciej Gałązka, Vector bundles give equations of cactus varieties, Linear Algebra Appl. 521 (2017), 254–262. MR 3611482, DOI 10.1016/j.laa.2016.12.005
- Devra Garfinkle, A NEW CONSTRUCTION OF THE JOSEPH IDEAL, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941017
- Fulvio Gesmundo, J. M. Landsberg, and Michael Walter, Matrix product states and the quantum max-flow/min-cut conjectures, J. Math. Phys. 59 (2018), no. 10, 102205, 11. MR 3865047, DOI 10.1063/1.5026985
- Wolfgang Hackbusch, Tensor spaces and numerical tensor calculus, Springer Series in Computational Mathematics, vol. 42, Springer, Heidelberg, 2012. MR 3236394, DOI 10.1007/978-3-642-28027-6
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
- Lucien Hardy, Why quantum theory?, Non-locality and modality (Cracow, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 64, Kluwer Acad. Publ., Dordrecht, 2002, pp. 61–73. MR 2031969
- M. B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. Theory Exp. 8 (2007), P08024, 14. MR 2338267, DOI 10.1088/1742-5468/2007/08/p08024
- Matthew B. Hastings, The asymptotics of quantum max-flow min-cut, Comm. Math. Phys. 351 (2017), no. 1, 387–418. MR 3613509, DOI 10.1007/s00220-016-2791-8
- Jonathan D. Hauenstein, Christian Ikenmeyer, and J. M. Landsberg, Equations for lower bounds on border rank, Exp. Math. 22 (2013), no. 4, 372–383. MR 3171099, DOI 10.1080/10586458.2013.825892
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Elitza Hristova, Tomasz Maciazek, and Valdemar V. Tsanov, On momentum images of representations and secant varieties, arXiv:1504.01110.
- G. H. Hardy and S. Ramanujan, Asymptotic formulæin combinatory analysis [Proc. London Math. Soc. (2) 17 (1918), 75–115], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 276–309. MR 2280879
- Thomas A. Ivey and Joseph M. Landsberg, Cartan for beginners, Graduate Studies in Mathematics, vol. 175, American Mathematical Society, Providence, RI, 2016. Differential geometry via moving frames and exterior differential systems; Second edition [of MR2003610]. MR 3586335, DOI 10.1090/gsm/175
- Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam, Non-commutative Edmonds’ problem and matrix semi-invariants, Comput. Complexity 26 (2017), no. 3, 717–763. MR 3691737, DOI 10.1007/s00037-016-0143-x
- O. Klein, Quantum coding, Z. Phys. 72 (1931), 767–775.
- Alexander Klyachko, Vector bundles, linear representations, and spectral problems, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 599–613. MR 1957068
- George Kempf and Linda Ness, The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 233–243. MR 555701
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- A. Klümper, A. Schadschneider, and J. Zittartz, Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets, EPL (Europhysics Letters) 24 (1993), no. 4, 293.
- M. Keyl and R. F. Werner, Estimating the spectrum of a density operator, Phys. Rev. A (3) 64 (2001), no. 5, 052311, 5. MR 1878924, DOI 10.1103/PhysRevA.64.052311
- J. M. Landsberg, The border rank of the multiplication of $2\times 2$ matrices is seven, J. Amer. Math. Soc. 19 (2006), no. 2, 447–459. MR 2188132, DOI 10.1090/S0894-0347-05-00506-0
- J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012. MR 2865915, DOI 10.1090/gsm/128
- J. M. Landsberg, Geometry and complexity theory, Cambridge Studies in Advanced Mathematics, vol. 169, Cambridge University Press, Cambridge, 2017. MR 3729273, DOI 10.1017/9781108183192
- Arielle Leitner, Limits under conjugacy of the diagonal subgroup in $SL_n(\Bbb {R})$, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3243–3254. MR 3503693, DOI 10.1090/proc/12959
- François Le Gall, Powers of tensors and fast matrix multiplication, ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 296–303. MR 3239939, DOI 10.1145/2608628.2608664
- Thomas Lickteig, Typical tensorial rank, Linear Algebra Appl. 69 (1985), 95–120. MR 798367, DOI 10.1016/0024-3795(85)90070-9
- Elliott H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Advances in Math. 11 (1973), 267–288. MR 332080, DOI 10.1016/0001-8708(73)90011-X
- Joseph M. Landsberg and Laurent Manivel, Construction and classification of complex simple Lie algebras via projective geometry, Selecta Math. (N.S.) 8 (2002), no. 1, 137–159. MR 1890196, DOI 10.1007/s00029-002-8103-5
- J. M. Landsberg and L. Manivel, Generalizations of Strassen’s equations for secant varieties of Segre varieties, Comm. Algebra 36 (2008), no. 2, 405–422. MR 2387532, DOI 10.1080/00927870701715746
- Joseph M. Landsberg and Mateusz Michałek, A $2n^2-\log _2(n)-1$ lower bound for the border rank of matrix multiplication, Int. Math. Res. Not. IMRN 15 (2018), 4722–4733. MR 3842382, DOI 10.1093/imrn/rnx025
- J. M. Landsberg and Mateusz Michałek, Abelian tensors, J. Math. Pures Appl. (9) 108 (2017), no. 3, 333–371 (English, with English and French summaries). MR 3682743, DOI 10.1016/j.matpur.2016.11.004
- J. M. Landsberg and Mateusz Michałek, On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry, SIAM J. Appl. Algebra Geom. 1 (2017), no. 1, 2–19. MR 3633766, DOI 10.1137/16M1067457
- J. M. Landsberg and Giorgio Ottaviani, Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 569–606. MR 3081636, DOI 10.1007/s10231-011-0238-6
- Joseph M. Landsberg and Giorgio Ottaviani, New lower bounds for the border rank of matrix multiplication, Theory Comput. 11 (2015), 285–298. MR 3376667, DOI 10.4086/toc.2015.v011a011
- Joseph M. Landsberg, Yang Qi, and Ke Ye, On the geometry of tensor network states, Quantum Inf. Comput. 12 (2012), no. 3-4, 346–354. MR 2933533
- Elliott H. Lieb and Mary Beth Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Mathematical Phys. 14 (1973), 1938–1941. With an appendix by B. Simon. MR 345558, DOI 10.1063/1.1666274
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Laurent Manivel, On the asymptotics of Kronecker coefficients, J. Algebraic Combin. 42 (2015), no. 4, 999–1025. MR 3417256, DOI 10.1007/s10801-015-0614-1
- Mateusz Michalek and Yaroslav Shitov, Quantum version of weilandt’s inequality revisited, arXiv:1809.04387.
- Mateusz Michalek, Tim Seynnaeve, and Frank Verstraete, A higher dimensional version of the quantum weilandt’s theorem, arXiv:1811.05502.
- David Mumford, Algebraic geometry. I, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Complex projective varieties; Reprint of the 1976 edition. MR 1344216
- Linda Ness, A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984), no. 6, 1281–1329. With an appendix by David Mumford. MR 765581, DOI 10.2307/2374395
- M. A. Nielsen, Conditions for a class of entanglement transformations, P H Y S I C A L R E V I E W L E T T E R S 83 (1999), 436–439.
- V. Ja. Pan, On means of calculating values of polynomials, Uspehi Mat. Nauk 21 (1966), no. 1 (127), 103–134 (Russian). MR 0207178
- Azaria Paz, An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear and Multilinear Algebra 15 (1984), no. 2, 161–170. MR 740668, DOI 10.1080/03081088408817585
- D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, Matrix product state representations, Quantum Inf. Comput. 7 (2007), no. 5-6, 401–430. MR 2347213
- Claudio Procesi, Lie groups, Universitext, Springer, New York, 2007. An approach through invariants and representations. MR 2265844
- Parth Sarin, On the geometry of tensor network states of $2\times n$ grids, preprint arXiv, to appear in LAA.
- A. Schönhage, Partial and total matrix multiplication, SIAM J. Comput. 10 (1981), no. 3, 434–455. MR 623057, DOI 10.1137/0210032
- Benjamin Schumacher, Quantum coding, Phys. Rev. A (3) 51 (1995), no. 4, 2738–2747. MR 1328824, DOI 10.1103/PhysRevA.51.2738
- Rüdiger Schack, Quantum theory from four of Hardy’s axioms, Found. Phys. 33 (2003), no. 10, 1461–1468. Special issue dedicated to David Mermin, Part I. MR 2039620, DOI 10.1023/A:1026044329659
- A. Seigal, Ranks and symmetric ranks of cubic surfaces, preprint, arXiv:1801.05377.
- C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656. MR 26286, DOI 10.1002/j.1538-7305.1948.tb01338.x
- Igor R. Shafarevich, Basic algebraic geometry. 2, 3rd ed., Springer, Heidelberg, 2013. Schemes and complex manifolds; Translated from the 2007 third Russian edition by Miles Reid. MR 3100288
- Yaroslav Shitov, A counterexample to Comon’s conjecture, SIAM J. Appl. Algebra Geom. 2 (2018), no. 3, 428–443. MR 3852707, DOI 10.1137/17M1131970
- Yaroslav Shitov, A counterexample to Comon’s conjecture, SIAM J. Appl. Algebra Geom. 2 (2018), no. 3, 428–443. MR 3852707, DOI 10.1137/17M1131970
- A. V. Smirnov, The bilinear complexity and practical algorithms for matrix multiplication, Zh. Vychisl. Mat. Mat. Fiz. 53 (2013), no. 12, 1970–1984 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 53 (2013), no. 12, 1781–1795. MR 3146566, DOI 10.1134/S0965542513120129
- A. V. Smirnov, A bilinear algorithm of length 22 for approximate multiplication of $2\times 7$ and $7\times 2$ matrices, Comput. Math. Math. Phys. 55 (2015), no. 4, 541–545. MR 3343116, DOI 10.1134/S0965542515040168
- Mikel Sanz, David Pérez-García, Michael M. Wolf, and Juan I. Cirac, A quantum version of Wielandt’s inequality, IEEE Trans. Inform. Theory 56 (2010), no. 9, 4668–4673. MR 2807352, DOI 10.1109/TIT.2010.2054552
- W. F. Sawin and T. Tao, Notes on the “slice rank” of tensors, Available at https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of- tensors/.
- A. Stothers, On the complexity of matrix multiplication, PhD thesis, University of Edinburgh, 2010.
- Volker Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR 248973, DOI 10.1007/BF02165411
- Volker Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 184–202 (German, with English summary). MR 521168
- V. Strassen, Rank and optimal computation of generic tensors, Linear Algebra Appl. 52/53 (1983), 645–685. MR 709378, DOI 10.1016/0024-3795(83)80041-X
- V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 375/376 (1987), 406–443. MR 882307, DOI 10.1515/crll.1987.375-376.406
- V. Strassen, Degeneration and complexity of bilinear maps: some asymptotic spectra, J. Reine Angew. Math. 413 (1991), 127–180. MR 1089800, DOI 10.1515/crll.1991.413.127
- V. Strassen, Algebra and complexity, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 429–446. MR 1341854, DOI 10.1007/s10107-008-0221-1
- Volker Strassen, Komplexität und Geometrie bilinearer Abbildungen, Jahresber. Deutsch. Math.-Verein. 107 (2005), no. 1, 3–31 (German, with English summary). MR 2138544
- B. Sury, An elementary proof of the Hilbert-Mumford criterion, Electron. J. Linear Algebra 7 (2000), 174–177. MR 1781469, DOI 10.13001/1081-3810.1053
- V. Tobler, Spezialisierung und degeneration von tensoren, PhD thesis (1991).
- Valdemar V. Tsanov, Secant varieties and degrees of invariants, arXiv:1811.12048.
- F. Verstraete and J. I. Cirac, Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions, eprint arXiv:cond-mat/0407066 (2004).
- Helmut Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648 (German). MR 35265, DOI 10.1007/BF02230720
- Virginia Williams, Breaking the coppersimith-winograd barrier, preprint.