
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Lectures on Field Theory and Topology
About this Title
Daniel S. Freed, University of Texas at Austin, Austin, TX
Publication: CBMS Regional Conference Series in Mathematics
Publication Year:
2019; Volume 133
ISBNs: 978-1-4704-5206-3 (print); 978-1-4704-5391-6 (online)
DOI: https://doi.org/10.1090/cbms/133
MathSciNet review: MR3969923
MSC: Primary 57R56; Secondary 55-02, 81Q70, 81T45, 82B10
Table of Contents
Download chapters as PDF
Front/Back Matter
Chapters
- Introduction
- Bordism and topological field theories
- Quantum mechanics
- Wick-rotated quantum field theory and symmetry
- Classification theorems
- Extended locality
- Invertibility and stable homotopy theory
- Wick-rotated unitarity
- Extended positivity and stable homotopy theory
- Non-topological invertible field theories
- Computations for electron systems
- Anomalies in field theory
- Review of categories
- Michael Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175–186 (1989). MR 1001453
- Michael Atiyah, On framings of $3$-manifolds, Topology 29 (1990), no. 1, 1–7. MR 1046621, DOI 10.1016/0040-9383(90)90021-B
- Michael Atiyah, The logarithm of the Dedekind $\eta$-function, Math. Ann. 278 (1987), no. 1-4, 335–380. MR 909232, DOI 10.1007/BF01458075
- Lowell Abrams, Two-dimensional topological quantum field theories and Frobenius algebras, J. Knot Theory Ramifications 5 (1996), no. 5, 569–587. MR 1414088, DOI 10.1142/S0218216596000333
- Jørgen E. Andersen, Hans U. Boden, Atle Hahn, and Benjamin Himpel (eds.), Chern-Simons gauge theory: 20 years after, AMS/IP Studies in Advanced Mathematics, vol. 50, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2011. Papers from the workshop held in Bonn, August 3–7, 2009. MR 2798328, DOI 10.1090/amsip/050
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271–298. MR 219077, DOI 10.2307/1970690
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969), 462–468. MR 261613, DOI 10.1007/BF02564545
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- D. Ayala and J. Francis, The cobordism hypothesis, arXiv:1705.02240.
- David Ayala, Daniel S. Freed, and Ryan E. Grady (eds.), Topology and quantum theory in interaction, Contemporary Mathematics, vol. 718, American Mathematical Society, [Providence], RI, [2018] ©2018. NSF-CBMS Regional Conference in the Mathematical Sciences Topological and Geometric Methods in QFT, July 31–August 4, 2017, Montana State University, Bozeman, Montana. MR 3869638, DOI 10.1090/conm/718
- David Ayala, John Francis, and Nick Rozenblyum, Factorization homology I: Higher categories, Adv. Math. 333 (2018), 1042–1177. MR 3818096, DOI 10.1016/j.aim.2018.05.031
- Luis Alvarez-Gaumé and Paul Ginsparg, The structure of gauge and gravitational anomalies, Ann. Physics 161 (1985), no. 2, 423–490. MR 793821, DOI 10.1016/0003-4916(85)90087-9
- Luis Álvarez-Gaumé and Miguel Á. Vázquez-Mozo, An invitation to quantum field theory, Lecture Notes in Physics, vol. 839, Springer, Heidelberg, 2012. MR 3014473, DOI 10.1007/978-3-642-23728-7
- Luis Alvarez-Gaumé and Edward Witten, Gravitational anomalies, Nuclear Phys. B 234 (1984), no. 2, 269–330. MR 736803, DOI 10.1016/0550-3213(84)90066-X
- M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276–281. MR 110106, DOI 10.1090/S0002-9904-1959-10344-X
- A. Alexeevski and S. Natanzon, Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves, Selecta Math. (N.S.) 12 (2006), no. 3-4, 307–377, arXiv:math/0202164.
- D. Aasen, E. Lake, and K. Walker, Fermion condensation and super pivotal categories, arXiv:1709.01941.
- D. W. Anderson, Universal coefficient theorems for $K$-theory. mimeographed notes, University of California at Berkeley (1969).
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. MR 397797, DOI 10.1017/S0305004100049410
- V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295, DOI 10.1007/978-1-4757-2063-1
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. V, Ann. of Math. (2) 93 (1971), 139–149. MR 279834, DOI 10.2307/1970757
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484–530. MR 236950, DOI 10.2307/1970715
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- M. F. Atiyah and I. M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 8, , Phys. Sci., 2597–2600. MR 742394, DOI 10.1073/pnas.81.8.2597
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138. MR 279833, DOI 10.2307/1970756
- M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 650828, DOI 10.1007/BF01425417
- David Ayala, Geometric cobordism categories, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Stanford University. MR 2713365
- A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys.Rev. B55 (1997), 1142–1161.
- R. A. Bertlmann, Anomalies in quantum field theory: dispersion relations and differential geometry, Nuclear Phys. B Proc. Suppl. 39BC (1995), 482–487. QCD 94 (Montpellier, 1994). MR 1373240, DOI 10.1016/0920-5632(95)00122-P
- G. Birkhoff and M. K. Bennett, Felix Klein and his “Erlanger Programm”, History and philosophy of modern mathematics (Minneapolis, MN, 1985), Minnesota Stud. Philos. Sci., XI, Univ. Minnesota Press, Minneapolis, MN, 1988, pp. 145–176.
- C. Beem, D. Ben-Zvi, M. Bullimore, T. Dimofte, and A. Neitzke, Secondary products in supersymmetric field theory, arXiv:1809.00009.
- Edgar H. Brown Jr. and Michael Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976), no. 1, 1–27. MR 405403, DOI 10.2307/2373610
- John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105. MR 1355899, DOI 10.1063/1.531236
- A. Beaudry and J. A. Campbell, A guide for computing stable homotopy groups, Topology and Quantum Theory in Interaction (Ryan E. Grady David Ayala, Daniel S. Freed, ed.), Contemporary Mathematics, vol. 718, American Mathematical Society, 2018, pp. 89–136. arXiv:1801.07530.
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986), no. 1, 103–163. MR 861886
- U. Bunke and D. Gepner, Differential function spectra, the differential Becker-Gottlieb transfer, and applications to differential algebraic $K$-theory, arXiv:1306.0247.
- D. Ben-Zvi, S. Gunningham, and D. Nadler, The character field theory and homology of character varieties, arXiv:1705.04266 (2017); Mathematical Research Letters (to appear).
- C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883–927. MR 1362791, DOI 10.1016/0040-9383(94)00051-4
- A. Brochier, D. Jordan, and N. Snyder, On dualizability of braided tensor categories, arXiv:1804.07538.
- Marcel Bökstedt and Ib Madsen, The cobordism category and Waldhausen’s $K$-theory, An alpine expedition through algebraic topology, Contemp. Math., vol. 617, Amer. Math. Soc., Providence, RI, 2014, pp. 39–80. MR 3243393, DOI 10.1090/conm/617/12282
- D. Ben-Zvi and D. Nadler, The Character Theory of a Complex Group, arXiv:0904.1247. preprint.
- Julia E. Bergner and Charles Rezk, Comparison of models for $(\infty ,n)$-categories, I, Geom. Topol. 17 (2013), no. 4, 2163–2202. MR 3109865, DOI 10.2140/gt.2013.17.2163
- J. E. Bergner and C. Rezk, Comparison of models for $(\infty ,n)$-categories, II, arXiv:1406.4182.
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- U. Bunke, Transgression of the index gerbe, Manuscripta Math. 109 (2002), no. 3, 263–287, arXiv:math/0109052.
- Kevin Costello, Renormalization and effective field theory, Mathematical Surveys and Monographs, vol. 170, American Mathematical Society, Providence, RI, 2011. MR 2778558, DOI 10.1090/surv/170
- K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), no. 1, 165–214, arXiv:math/0412149.
- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no. 2, 483–515. MR 755236
- J. A. Campbell, Homotopy Theoretic Classification of Symmetry Protected Phases, arXiv:1708.04264.
- D. Castelvecchi, The strange topology that is reshaping physics, July 2017, pp. 272–274. https://www.nature.com/news/the-strange-topology-that-is-reshaping-physics-1.22316.
- Damien Calaque and Claudia Scheimbauer, A note on the $(\infty ,n)$-category of cobordisms, Algebr. Geom. Topol. 19 (2019), no. 2, 533–655. MR 3924174, DOI 10.2140/agt.2019.19.533
- Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173 (French). MR 292089
- H. Lam, N. Seiberg, C. Córdova, and D. S. Freed, Anomalies in the space of coupling constants and their dynamical applications, I, arXiv:1905.09315 (2019); Part II, arXiv:1905.13361 (2019).
- Kevin Costello and Owen Gwilliam, Factorization algebras in quantum field theory. Vol. 1, New Mathematical Monographs, vol. 31, Cambridge University Press, Cambridge, 2017. MR 3586504, DOI 10.1017/9781316678626
- X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order, Phys. Rev. B 82 (2010), 155138, arXiv:1004.3835.
- Jeff Cheeger and James Simons, Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 50–80. MR 827262, DOI 10.1007/BFb0075216
- C. Córdova, P.-S. Hsin, and N. Seiberg, Time-Reversal Symmetry, Anomalies, and Dualities in (2+1)$d$, SciPost Phys. 5 (2018), no. 1, 006, arXiv:1712.08639.
- S. Coleman and J. Mandula, All possible symmetries of the S matrix, Physical Review 159 (1967), no. 5, 1251–56.
- Shiing Shen Chern and James Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48–69. MR 353327, DOI 10.2307/1971013
- P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, at the Clarendon Press, 1947. 3d ed. MR 0023198
- Xianzhe Dai and Daniel S. Freed, $\eta$-invariants and determinant lines, J. Math. Phys. 35 (1994), no. 10, 5155–5194. Topology and physics. MR 1295462, DOI 10.1063/1.530747
- O. Davidovich, State sums in $2$-dimensional fully extended topological field theories, Ph.D. thesis, University of Texas at Austin, 2011. http://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-05-3139.
- Pierre Deligne, Notes on spinors, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 99–135. MR 1701598
- A. Debray, The low-energy TQFT of the generalized double semion model, arXiv:1811.03583.
- A. Debray and S. Gunningham, The Arf-Brown TQFT of pin$^-$ surfaces, Topology and quantum theory in interaction, Contemp. Math., vol. 718, Amer. Math. Soc., Providence, RI, 2018, pp. 49–87. arXiv:1803.11183.
- Pierre Deligne and John W. Morgan, Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 41–97. MR 1701597
- Pierre Deligne and Daniel S. Freed, Classical field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 137–225. MR 1701599
- P. Deligne and D. S. Freed, Sign manifesto, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 357–363.
- R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory, igitur-archive.library.uu.nl/dissertations/2011-0929-200347/UUindex.html. Ph.D. thesis.
- S. Deser, R. Jackiw, and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982), 975–978.
- Pierre Deligne and John W. Morgan, Notes on supersymmetry (following Joseph Bernstein), Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 41–97. MR 1701597
- C. L. Douglas, C. Schommer-Pries, and N. Snyder, Dualizable tensor categories, arXiv:1312.7188.
- Robbert Dijkgraaf and Edward Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), no. 2, 393–429. MR 1048699
- Freeman J. Dyson, The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Mathematical Phys. 3 (1962), 1199–1215. MR 177643, DOI 10.1063/1.1703863
- J. Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, J. Reine Angew. Math. 684 (2013), 1–29, arXiv:0902.4719.
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Daniel S. Freed, Commentary on “Lectures on Morse theory, old and new” [comment on the reprint of MR0663786], Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 4, 517–523. MR 2823021, DOI 10.1090/S0273-0979-2011-01349-0
- Daniel S. Freed, Characteristic numbers and generalized path integrals, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 126–138. MR 1358615
- Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2, 343–398. MR 1256993
- Daniel S. Freed, Extended structures in topological quantum field theory, Quantum topology, Ser. Knots Everything, vol. 3, World Sci. Publ., River Edge, NJ, 1993, pp. 162–173. MR 1273572, DOI 10.1142/9789812796387_{0}008
- D. S. Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 1, 57–92, arXiv:1210.5100.
- D. S. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 221–254, arXiv:0808.2507.
- Yum-Tong Siu, A new bound for the effective Matsusaka big theorem, Houston J. Math. 28 (2002), no. 2, 389–409. Special issue for S. S. Chern. MR 1898197
- S.-T. Yau (ed.), Mathematical aspects of string theory, Advanced Series in Mathematical Physics, vol. 1, World Scientific Publishing Co., Singapore, 1987. MR 915812, DOI 10.1142/0383
- Rob Kirby, Vyacheslav Krushkal, and Zhenghan Wang (eds.), Proceedings of the Freedman Fest, Geometry & Topology Monographs, vol. 18, Geometry & Topology Publications, Coventry, 2012. Papers from the Conference on Low-Dimensional Manifolds and High-Dimensional Categories held in honor of Michael Hartley Freedman at the University of California, Berkeley, CA, June 6–10, 2011, and the Freedman Symposium held in Santa Barbara, CA, April 15–17, 2011. MR 3137657, DOI 10.2140/gtm.2012.18
- R. Kirby, V. Kurshkal, and Z. Wang (eds.), Anomalies and invertible field theories, String-Math 2013, Proc. Sympos. Pure Math., vol. 88, Amer. Math. Soc., Providence, RI, 2014, pp. 25–45. arXiv:1404.7224.
- R. Kirby, V. Kurshkal, and Z. Wang (eds.), On equivariant Chern-Weil forms and determinant lines, Surveys in Differential Geometry 2017 (Richard M. Schoen Shing-Tung Yau Huai-Dong Cao, Jun Li, ed.), vol. XXII, International Press, Somerville, MA, 2018, pp. 125–132. arXiv:1606.01129.
- Ludwig Faddeev, Elementary introduction to quantum field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 513–550. MR 1701606
- L. Faddeev, Hamiltonian approach to the theory of anomalies, Recent Developments in Mathematical physics (H. Mitter and L. Pittner, eds.), Internationale Universitatswoche fur Kernphysik, Schladming, Austria, vol. 26, 1987, pp. 137–159.
- L. Fidkowski, X. Chen, and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev. X3 (2013), no. 4, 041016, arXiv:1305.5851.
- D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases. arXiv:1604.06527.
- D. S. Freed and M. J. Hopkins, Consistency of M-theory on unorientable manifolds. in preparation.
- D. S. Freed and M. J. Hopkins, Invertible phases of matter with spatial symmetry, arXiv:1901.06419 (2019).
- M. H. Freedman and M. B. Hastings, Double semions in arbitrary dimension, Comm. Math. Phys. 347 (2016), no. 2, 389–419, arXiv:1507.05676.
- Daniel S. Freed, Michael J. Hopkins, Jacob Lurie, and Constantin Teleman, Topological quantum field theories from compact Lie groups, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, Amer. Math. Soc., Providence, RI, 2010, pp. 367–403. MR 2648901, DOI 10.1090/crmp/050/26
- D. S. Freed, M. J. Hopkins, and C. Teleman, Consistent orientation of moduli spaces, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 395–419. arXiv:0711.1909.
- L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in Three Dimensions, Phys. Rev. Lett. 98 (2007), 106803, arXiv:cond-mat/0607699.
- Daniel S. Freed, Zohar Komargodski, and Nathan Seiberg, The sum over topological sectors and $\theta$ in the $2+1$-dimensional $\Bbb {CP}^1\sigma$-model, Comm. Math. Phys. 362 (2018), no. 1, 167–183. MR 3833607, DOI 10.1007/s00220-018-3093-0
- D. S. Freed and J. Lott, An index theorem in differential $K$-theory, Geom. Topol. 14 (2010), no. 2, 903–966, arXiv:0907.3508.
- D. S. Freed and G. W. Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013), no. 8, 1927–2023, arXiv:1208.5055.
- D. S. Freed and G. W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys. 263 (2006), 89–132, arXiv:hep-th/0409135.
- D. S. Freed, G. W. Moore, and G. Segal, The uncertainty of fluxes, Commun. Math. Phys. 271 (2007), 247–274, arXiv:hep-th/0605198.
- D. S. Freed and F. Quinn, Chern-Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993), no. 3, 435–472, arXiv:hep-th/911100.
- Hans Freudenthal, Über die Klassen der Sphärenabbildungen I. Große Dimensionen, Compositio Math. 5 (1938), 299–314 (German). MR 1556999
- Kazuo Fujikawa and Hiroshi Suzuki, Path integrals and quantum anomalies, International Series of Monographs on Physics, vol. 122, The Clarendon Press, Oxford University Press, New York, 2004. Translated from the 2001 Japanese original. MR 2077220, DOI 10.1093/acprof:oso/9780198529132.001.0001
- D. S. Freed and C. Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014), no. 2, 459–476, arXiv:1212.1692.
- D. S. Freed and C. Teleman, Topological dualities in the Ising model, arXiv:1806.00008.
- Daniel S. Freed and Edward Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999), no. 4, 819–851. MR 1797580, DOI 10.4310/AJM.1999.v3.n4.a6
- D. Gaiotto, Gapped phases of matter vs. Topological field theories, July, 2017. http://pirsa.org/17070066. Lecture at Perimeter Institute (Hopf Algebras in Kitaev’s Quantum Double Models: Mathematical Connections from Gauge Theory to Topological Quantum Computing and Categorical Quantum Mechanics).
- James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102, DOI 10.1007/978-1-4612-4728-9
- D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, International Journal of Modern Physics A 31 (2016), no. 28n29, 1645044, arXiv:1505.05856.
- Davide Gaiotto, Anton Kapustin, Zohar Komargodski, and Nathan Seiberg, Theta, time reversal and temperature, J. High Energy Phys. 5 (2017), 091, front matter+49. MR 3662840, DOI 10.1007/JHEP05(2017)091
- Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett, Generalized global symmetries, J. High Energy Phys. 2 (2015), 172, front matter+61. MR 3321281, DOI 10.1007/JHEP02(2015)172
- Meng Guo, Pavel Putrov, and Juven Wang, Time reversal, $SU(N)$ Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in $3+1D$, Ann. Physics 394 (2018), 244–293. MR 3812704, DOI 10.1016/j.aop.2018.04.025
- Sam Gunningham, Spin Hurwitz numbers and topological quantum field theory, Geom. Topol. 20 (2016), no. 4, 1859–1907. MR 3548460, DOI 10.2140/gt.2016.20.1859
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- Rudolf Haag, Local quantum physics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. Fields, particles, algebras. MR 1405610, DOI 10.1007/978-3-642-61458-3
- D. Heard and V. Stojanoska, $K$-theory, reality, and duality, J. K-Theory 14 (2014), no. 3, 526–555, arXiv:1401.2581.
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262, arXiv:0908.3724.
- P. Heinzner, A. Huckleberry, and M.R. Zirnbauer, Symmetry Classes of Disordered Fermions, Communications in Mathematical Physics 257 (2005), no. 3, 725–771, arXiv:math-ph/0411040.
- Gijs Heuts and Jacob Lurie, Ambidexterity, Topology and field theories, Contemp. Math., vol. 613, Amer. Math. Soc., Providence, RI, 2014, pp. 79–110. MR 3221291, DOI 10.1090/conm/613/12236
- M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and M-theory, J. Differential Geom. 70 (2005), no. 3, 329–452. MR 2192936
- Henning Hohnhold, Stephan Stolz, and Peter Teichner, From minimal geodesics to supersymmetric field theories, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, Amer. Math. Soc., Providence, RI, 2010, pp. 207–274. MR 2648897, DOI 10.1090/crmp/050/20
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- Arthur Jaffe and Edward Witten, Quantum Yang-Mills theory, The millennium prize problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 129–152. MR 2238278
- David Kazhdan, Introduction to QFT, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 377–418. MR 1701603
- Anton Kapustin, Topological field theory, higher categories, and their applications, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 2021–2043. MR 2827874
- A. Kapustin, Is quantum mechanics exact?, J. Math. Phys. 54 (2013), no. 6, 062107, 15, arXiv:1303.6917.
- A. Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: beyond group cohomology, arXiv:1403.1467.
- M. Kapranov, Supergeometry in mathematics and physics, arXiv:1512.07042.
- Michel Kervaire, Courbure intégrale généralisée et homotopie, Math. Ann. 131 (1956), 219–252 (French). MR 86302, DOI 10.1007/BF01342961
- M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426, arXiv:math/9908171.
- A. Yu. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Physics 303 (2003), no. 1, 2–30. MR 1951039, DOI 10.1016/S0003-4916(02)00018-0
- A. Yu. Kitaev, Toward Topological Classification of Phases with Short-range Entanglement, 2011. http://online.kitp.ucsb.edu/online/topomat11/kitaev/. Lecture at KITP.
- A. Yu. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf.Proc. 1134 (2009), 22–30, arXiv:0901.2686.
- A. Yu. Kitaev, Homotopy-theoretic approach to SPT phases in action: $\mathbb {Z}/16\mathbb {Z}$ classification of three-dimensional superconductors, January 2015. http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015. talk at Symmetry and Topology in Quantum Matter, Institute for Pure and Applied Mathematics.
- A. Yu. Kitaev, On the Classification of Short-Range Entangled States, June, 2013. http://scgp.stonybrook.edu/archives/7874. Lecture at SCGP.
- Kevin Robert Klonoff, An index theorem in differential K-theory, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–The University of Texas at Austin. MR 2711943
- C. L. Kane and E. J. Mele, ${Z}_{2}$ Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95 (2005), 146802, arXiv:cond-mat/0506581.
- C. Kane and J. Moore, Topological insulators, Physics World 24 (2011), no. 02, 32.
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- Joachim Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004. MR 2037238
- R. C. Kirby and L. R. Taylor, $\textrm {Pin}$ structures on low-dimensional manifolds, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 177–242. MR 1171915
- R. C. Kirby and L. R. Taylor, A calculation of $\textrm {Pin}^+$ bordism groups, Comment. Math. Helv. 65 (1990), no. 3, 434–447. MR 1069818, DOI 10.1007/BF02566617
- Anton Kapustin, Ryan Thorngren, Alex Turzillo, and Zitao Wang, Fermionic symmetry protected topological phases and cobordisms, J. High Energy Phys. 12 (2015), 052, front matter+20pp. MR 3464750, DOI 10.1007/jhep12(2015)052
- Hui-Hsiung Kuo, Introduction to stochastic integration, Universitext, Springer, New York, 2006. MR 2180429
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222
- Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- R. J. Lawrence, Triangulations, categories and extended topological field theories, Quantum topology, Ser. Knots Everything, vol. 3, World Sci. Publ., River Edge, NJ, 1993, pp. 191–208. MR 1273575, DOI 10.1142/9789812796387_{0}011
- G. Lusztig, J. Milnor, and F. P. Peterson, Semi-characteristics and cobordism, Topology 8 (1969), 357–359. MR 246308, DOI 10.1016/0040-9383(69)90021-4
- J. Lott, Higher-degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002), no. 1, 41–69, arXiv:math/0106177.
- Y.-M. Lu and A. Vishwanath, Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach, Phys. Rev. B 86 (2012), 125119, arXiv:1205.3156.
- M. A. Metlitski, $S$-duality of $u(1)$ gauge theory with $\theta =\pi$ on non-orientable manifolds: Applications to topological insulators and superconductors, arXiv:1510.05663.
- George W. Mackey, The mathematical foundations of quantum mechanics: A lecture-note volume, W. A. Benjamin, Inc., New York-Amsterdam, 1963. MR 0155567
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath, Interaction effects on 3D topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets, arXiv:1406.3032.
- John W. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, Va., 1965. Based on notes by David W. Weaver. MR 0226651
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942
- A. A. Migdal, Recursion Equations in Gauge Theories, Sov. Phys. JETP 42 (1975), 413. [Zh. Eksp. Teor. Fiz.69,810(1975)].
- G. W. Moore, Quantum symmetries and $K$-theory. http://www.physics.rutgers.edu/users/gmoore/QuantumSymmetryKTheory-Part1.pdf. notes from St. Ottilien lectures, July, 2012.
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5
- Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952
- Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. MR 1898414, DOI 10.1090/surv/096
- Philip Nelson and Luis Alvarez-Gaumé, Hamiltonian interpretation of anomalies, Comm. Math. Phys. 99 (1985), no. 1, 103–114. MR 791642
- David Tong, The 2016 Nobel prize in physics, Math. Today (Southend-on-Sea) 52 (2016), no. 6, 260–261. MR 3587395
- Michael Luis Ortiz, Differential equivariant K-theory, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–The University of Texas at Austin. MR 2713530
- Konrad Osterwalder and Robert Schrader, Axioms for Euclidean Green’s functions. II, Comm. Math. Phys. 42 (1975), 281–305. With an appendix by Stephen Summers. MR 376002
- L. S. Pontryagin, Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopiĭ, 2nd ed., Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0445517
- Richard S. Palais and Chuu-Lian Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, Berlin, 1988. MR 972503, DOI 10.1007/BFb0087442
- D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96 (Russian). MR 783704
- E. Riehl, Category theory in context, Courier Dover Publications, 2017.
- Bruce L. Reinhart, Cobordism and the Euler number, Topology 2 (1963), 173–177. MR 153021, DOI 10.1016/0040-9383(63)90031-4
- I. Runkel and L. Szegedy, Area-dependent quantum field theory with defects, arXiv:1807.08196.
- Shlomo Sternberg, Lectures on differential geometry, 2nd ed., Chelsea Publishing Co., New York, 1983. With an appendix by Sternberg and Victor W. Guillemin. MR 891190
- Christopher John Schommer-Pries, The classification of two-dimensional extended topological field theories, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–University of California, Berkeley. MR 2713992
- C. Schommer-Pries, Invertible field theories, arXiv:1712.08029.
- David Ayala, Daniel S. Freed, and Ryan E. Grady (eds.), Topology and quantum theory in interaction, Contemporary Mathematics, vol. 718, American Mathematical Society, [Providence], RI, [2018] ©2018. NSF-CBMS Regional Conference in the Mathematical Sciences Topological and Geometric Methods in QFT, July 31–August 4, 2017, Montana State University, Bozeman, Montana. MR 3869638, DOI 10.1090/conm/718
- Graeme Segal, The definition of conformal field theory, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 421–577. MR 2079383
- G. Segal, Stanford Lectures, Lecture 1: Topological field theories, http://www.cgtp.duke.edu/ITP99/segal/stanford/lect1.pdf.
- G. Segal, Felix Klein Lectures 2011. http://www.mpim-bonn.mpg.de/node/3372/abstracts.
- G. Segal, private conversations.
- G. Segal, Faddeev’s anomaly in Gauss’s law. preprint.
- Nathan Seiberg and Edward Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP. Prog. Theor. Exp. Phys. 12 (2016), 12C101, 78. MR 3628684, DOI 10.1093/ptep/ptw083
- Noah Snyder, Mednykh’s formula via lattice topological quantum field theories, Proceedings of the 2014 Maui and 2015 Qinhuangdao conferences in honour of Vaughan F. R. Jones’ 60th birthday, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 46, Austral. Nat. Univ., Canberra, 2017, pp. 389–398. MR 3635678
- Stephan Stolz and Peter Teichner, Supersymmetric field theories and generalized cohomology, Mathematical foundations of quantum field theory and perturbative string theory, Proc. Sympos. Pure Math., vol. 83, Amer. Math. Soc., Providence, RI, 2011, pp. 279–340. MR 2742432, DOI 10.1090/pspum/083/2742432
- F. Strocchi, An introduction to the mathematical structure of quantum mechanics, Advanced Series in Mathematical Physics, vol. 27, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. A short course for mathematicians. MR 2222127, DOI 10.1142/5908
- Nathan Seiberg, Yuji Tachikawa, and Kazuya Yonekura, Anomalies of duality groups and extended conformal manifolds, PTEP. Prog. Theor. Exp. Phys. 7 (2018), 073B04, 27. MR 3842900, DOI 10.1093/ptep/pty069
- R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, Princeton Landmarks in Physics, Princeton University Press, Princeton, NJ, 2000. Corrected third printing of the 1978 edition. MR 1884336
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
- Leon A. Takhtajan, Quantum mechanics for mathematicians, Graduate Studies in Mathematics, vol. 95, American Mathematical Society, Providence, RI, 2008. MR 2433906, DOI 10.1090/gsm/095
- Constantin Teleman, Five lectures on topological field theory, Geometry and quantization of moduli spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2016, pp. 109–164. MR 3675464
- G. ’t Hooft, On the phase transition towards permanent quark confinement, Nuclear Phys. B 138 (1978), no. 1, 1–25. MR 489444, DOI 10.1016/0550-3213(78)90153-0
- V. Turaev and P. Turner, Unoriented topological quantum field theory and link homology, Algebr. Geom. Topol. 6 (2006), 1069–1093, arXiv:math/0506229.
- Vladimir Turaev, Homotopy quantum field theory, EMS Tracts in Mathematics, vol. 10, European Mathematical Society (EMS), Zürich, 2010. Appendix 5 by Michael Müger and Appendices 6 and 7 by Alexis Virelizier. MR 2674592, DOI 10.4171/086
- Erik Verlinde, Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360–376. MR 954762, DOI 10.1016/0550-3213(88)90603-7
- John von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, Princeton, N.J., 1955. Translated by Robert T. Beyer. MR 0066944
- J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1930), no. 1, 370–427 (German). MR 1512583, DOI 10.1007/BF01782352
- Edward Witten, Dynamics of quantum field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 1119–1424. MR 1701615
- E. Witten, The “parity” anomaly on an unorientable manifold, Physical Review B 94 (2016), no. 19, 195150, arXiv:1605.02391.
- Edward Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141 (1991), no. 1, 153–209. MR 1133264
- Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 357–422. MR 1358625
- E. Witten, Homework, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 609–717.
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- E. Witten, What one can hope to prove about three-dimensional gauge theory. http://scgp.stonybrook.edu/video_portal/video.php?id=563. Talk at Mathematical Foundations of Quantum Field Theory Workshop, Simons Center for Geometry and Physics, January 2012.
- E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016), no. 3, 035001, arXiv:1508.04715.
- E. Witten, An SU(2) Anomaly, Phys. Lett. B117 (1982), 324–328.
- E. Witten, Global gravitational anomalies, Commun. Math. Phys. 100 (1985), 197.
- E. Witten, World sheet corrections via D instantons, JHEP 02 (2000), 030, arXiv:hep-th/9907041.
- Franz J. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Mathematical Phys. 12 (1971), 2259–2272. MR 289087, DOI 10.1063/1.1665530
- Steven Weinberg, The quantum theory of fields. Vol. II, Cambridge University Press, Cambridge, 1996. Modern applications. MR 1411911, DOI 10.1017/CBO9781139644174
- S. Weinberg, Superconductivity for Particular Theorists, Prog. Theor. Phys. Suppl. 86 (1986), 43.
- K. G. Wilson, Confinement of Quarks, Phys. Rev. D10 (1974), 2445–2459.
- C. Wang, A. C Potter, and T Senthil, Classification of interacting electronic topological insulators in three dimensions, Science 343 (2014), no. 6171, 629–631, arXiv:1306.3238.
- C. Wang and T Senthil, Interacting fermionic topological insulators/superconductors in 3D, Physical Review B 89 (2014), no. 19, 195124, arXiv:1401.1142.
- K. Walker and Z. Wang, (3+ 1)-TQFTs and topological insulators, Frontiers of Physics 7 (2012), no. 2, 150–159, arXiv:1104.2632.