
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Fitting Smooth Functions to Data
About this Title
Charles Fefferman, Princeton University, Princeton, NJ and Arie Israel, University of Texas at Austin, Austin, TX
Publication: CBMS Regional Conference Series in Mathematics
Publication Year:
2020; Volume 135
ISBNs: 978-1-4704-6130-0 (print); 978-1-4704-6263-5 (online)
DOI: https://doi.org/10.1090/cbms/135
Table of Contents
Download chapters as PDF
Front/Back Matter
Chapters
- Overview
- Whitney’s Extension Theorem
- $C^m$ Interpolation for Finite Data
- The Classical Whitney Extension Problem
- Extension and Interpolation in Sobolev Spaces
- Vector-Valued Functions
- Open Problems
- Matthias Aschenbrenner and Athipat Thamrongthanyalak, Whitney’s extension problem in o-minimal structures, Rev. Mat. Iberoam. 35 (2019), no. 4, 1027–1052. MR 3988078, DOI 10.4171/rmi/1077
- Daniel Azagra and Carlos Mudarra, An extension theorem for convex functions of class $C^{1,1}$ on Hilbert spaces, J. Math. Anal. Appl. 446 (2017), no. 2, 1167–1182. MR 3563028, DOI 10.1016/j.jmaa.2016.09.015
- Daniel Azagra and Carlos Mudarra, Whitney extension theorems for convex functions of the classes $C^1$ and $C^{1,\omega }$, Proc. Lond. Math. Soc. (3) 114 (2017), no. 1, 133–158. MR 3653079, DOI 10.1112/plms.12006
- Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava, Twice-Ramanujan sparsifiers, STOC’09—Proceedings of the 2009 ACM International Symposium on Theory of Computing, ACM, New York, 2009, pp. 255–262. MR 2780071
- Marcel Berger, Convexity, Amer. Math. Monthly 97 (1990), no. 8, 650–678. MR 1072810, DOI 10.2307/2324573
- Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), no. 3, 607–620. MR 1390657, DOI 10.1215/S0012-7094-96-08318-0
- Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), no. 2, 329–352. MR 1953261, DOI 10.1007/s00222-002-0255-6
- Silouanos Brazitikos, Quantitative Helly-type theorem for the diameter of convex sets, Discrete Comput. Geom. 57 (2017), no. 2, 494–505. MR 3602863, DOI 10.1007/s00454-016-9840-0
- Charles Fefferman, Whitney’s extension problem for $C^m$, Ann. of Math. (2) 164 (2006), no. 1, 313–359. MR 2233850, DOI 10.4007/annals.2006.164.313
- Yu. A. Brudnyĭ and P. A. Shvartsman, A linear extension operator for a space of smooth functions defined on a closed subset in $\textbf {R}^n$, Dokl. Akad. Nauk SSSR 280 (1985), no. 2, 268–272 (Russian). MR 775048
- —, Generalizations of Whitney’s extension theorem, Internat. Math. Res. Notices 3 (1994), 129–139.
- —, The traces of differentiable functions to subsets of $\mathbb {R}^n$, Linear and complex analysis. Problem book 3. Part II, Lecture Notes in Mathematics, vol. 1574, Springer-Verlag, Berlin, 1994, pp. 279–281.
- Yuri Brudnyi and Pavel Shvartsman, The Whitney problem of existence of a linear extension operator, J. Geom. Anal. 7 (1997), no. 4, 515–574. MR 1669235, DOI 10.1007/BF02921632
- Yuri Brudnyi and Pavel Shvartsman, Whitney’s extension problem for multivariate $C^{1,\omega }$-functions, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487–2512. MR 1814079, DOI 10.1090/S0002-9947-01-02756-8
- Paul B. Callahan and S. Rao Kosaraju, A decomposition of multidimensional point sets with applications to $k$-nearest-neighbors and $n$-body potential fields, J. Assoc. Comput. Mach. 42 (1995), no. 1, 67–90. MR 1370371, DOI 10.1145/200836.200853
- J. Carruth, A. Frei-Pearson, A. Israel, and B. Klartag, A coordinate-free proof of the finiteness principle for the Whitney extension problem, Rev. Mat. Iberoam. (2020), doi: 10.4171/rmi/1186.
- M. Safey El Din, Z. Yang, and L. Zhi, Computing real radicals and ${S}$-radicals of polynomial systems, J. Symb. Comput. (2019), doi: 10.1016/j.jsc.2019.10.018.
- M. Eilat and B. Klartag, Rigidity of Riemannian embeddings of discrete metric spaces, arXiv:2004.08621 (2020), https://arxiv.org/abs/2004.08621.
- Neil Epstein and Melvin Hochster, Continuous closure, axes closure, and natural closure, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3315–3362. MR 3766851, DOI 10.1090/tran/7031
- Charles L. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509–577. MR 2150391, DOI 10.4007/annals.2005.161.509
- —, Whitney’s extension problem for $C^m$, Ann. of Math. 164 (2006), no. 1, 313–359.
- —, $C^m$ extension by linear operators, Ann. of Math. 166 (2007), no. 3, 779–835.
- Charles Fefferman, The structure of linear extension operators for $C^m$, Rev. Mat. Iberoam. 23 (2007), no. 1, 269–280. MR 2351135, DOI 10.4171/RMI/495
- —, Fitting a $C^m$-smooth function to data III, Ann. of Math. 170 (2009), no. 1, 427–441.
- —, Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat. Iberoam. 21 (2009), no. 1, 313–348.
- Charles Fefferman, Nearly optimal interpolation of data in $\textrm {C}^2(\Bbb R^2)$. Part I, Rev. Mat. Iberoam. 28 (2012), no. 2, 415–533. MR 2916966, DOI 10.4171/rmi/68
- C. L. Fefferman and B. Guillén, Efficient algorithms for approximate smooth selection, J. Geometric Analysis (2019), doi: 10.1007/s12220-019-00242-y.
- Charles L. Fefferman, Arie Israel, and Garving K. Luli, Sobolev extension by linear operators, J. Amer. Math. Soc. 27 (2014), no. 1, 69–145. MR 3110796, DOI 10.1090/S0894-0347-2013-00763-8
- Charles Fefferman, Arie Israel, and Garving K. Luli, The structure of Sobolev extension operators, Rev. Mat. Iberoam. 30 (2014), no. 2, 419–429. MR 3231204, DOI 10.4171/RMI/787
- —, Finiteness principles for smooth selection, Geom. Funct. Anal. 27 (2016), no. 2, 422–477.
- —, Fitting a Sobolev function to data I, Rev. Mat. Iberoam. 32 (2016), no. 1, 273–374.
- Charles Fefferman, Arie Israel, and Garving Luli, Fitting a Sobolev function to data II, Rev. Mat. Iberoam. 32 (2016), no. 2, 649–750. MR 3512429, DOI 10.4171/RMI/897
- Charles Fefferman, Arie Israel, and Garving K. Luli, Fitting a Sobolev function to data III, Rev. Mat. Iberoam. 32 (2016), no. 3, 1039–1126. MR 3556061, DOI 10.4171/RMI/908
- Charles Fefferman, Arie Israel, and Garving K. Luli, Interpolation of data by smooth nonnegative functions, Rev. Mat. Iberoam. 33 (2017), no. 1, 305–324. MR 3615453, DOI 10.4171/RMI/938
- C. L. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan, Reconstruction and interpolation of manifolds I: The Geometric Whitney Problem, Found. Comput. Math. (2019), doi: 10.1007/s10208-019-09439-7.
- C. L. Fefferman, S. Ivanov, M. Lassas, and H. Narayanan, Fitting a manifold of large reach to noisy data, arXiv:1910.05084 (2019), https://arxiv.org/abs/1910.05084.
- —, Reconstruction of a Riemannian manifold from noisy intrinsic distances, arXiv:1905.07182 (2019), https://arxiv.org/abs/1905.07182.
- Charles Fefferman and Bo’az Klartag, An example related to Whitney extension with almost minimal $C^m$ norm, Rev. Mat. Iberoam. 25 (2009), no. 2, 423–446. MR 2554161, DOI 10.4171/RMI/571
- —, Fitting a $C^m$-smooth function to data I, Ann. of Math. 169 (2009), no. 1, 315–346.
- Charles Fefferman and Bo’az Klartag, Fitting a $C^m$-smooth function to data. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 49–273. MR 2514338, DOI 10.4171/RMI/569
- J. J. Kohn, Loss of derivatives, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, pp. 353–369. MR 2986966, DOI 10.1007/978-1-4614-4075-8_{1}7
- C. L. Fefferman and G. K. Luli, Generators for the $C^m$-closures of ideals, Rev. Mat. Iberoam. (to appear), arXiv:1902.03692 (2019), https://arxiv.org/abs/1902.03692.
- —, Solutions to a system of equations for $C^m$ functions, Rev. Mat. Iberoam. (to appear), arXiv:1902.03691 (2019), https://arxiv.org/abs/1902.03691.
- Charles Fefferman and Garving K. Luli, The Brenner-Hochster-Kollár and Whitney problems for vector-valued functions and jets, Rev. Mat. Iberoam. 30 (2014), no. 3, 875–892. MR 3254995, DOI 10.4171/RMI/801
- Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan, Testing the manifold hypothesis, J. Amer. Math. Soc. 29 (2016), no. 4, 983–1049. MR 3522608, DOI 10.1090/jams/852
- Charles Fefferman and Pavel Shvartsman, Sharp finiteness principles for Lipschitz selections, Geom. Funct. Anal. 28 (2018), no. 6, 1641–1705. MR 3881831, DOI 10.1007/s00039-018-0467-6
- André Galligo and Nicolai Vorobjov, Complexity of finding irreducible components of a semialgebraic set, J. Complexity 11 (1995), no. 1, 174–193. MR 1319055, DOI 10.1006/jcom.1995.1007
- D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 1998.
- Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124; erratum, insert to 6 (1958), no. 2 (French). MR 101294, DOI 10.1007/BF02790231
- B. Grünbaum, Convex polytopes, Wiley, London, New York, Sydney, 1967.
- Erwan Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on a Hilbert space, Geom. Funct. Anal. 19 (2009), no. 4, 1101–1118. MR 2570317, DOI 10.1007/s00039-009-0027-1
- Arie Israel, A bounded linear extension operator for $L^{2,p}(\Bbb R^2)$, Ann. of Math. (2) 178 (2013), no. 1, 183–230. MR 3043580, DOI 10.4007/annals.2013.178.1.3
- János Kollár and Krzysztof Nowak, Continuous rational functions on real and $p$-adic varieties, Math. Z. 279 (2015), no. 1-2, 85–97. MR 3299844, DOI 10.1007/s00209-014-1358-7
- Krzysztof Kurdyka and Wiesław Pawłucki, O-minimal version of Whitney’s extension theorem, Studia Math. 224 (2014), no. 1, 81–96. MR 3277053, DOI 10.4064/sm224-1-4
- Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. MR 2200122, DOI 10.1155/IMRN.2005.3625
- Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostalski, and Philippe Trébuchet, Moment matrices, border bases and real radical computation, J. Symbolic Comput. 51 (2013), 63–85. MR 3005782, DOI 10.1016/j.jsc.2012.03.007
- Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski, Semidefinite characterization and computation of zero-dimensional real radical ideals, Found. Comput. Math. 8 (2008), no. 5, 607–647. MR 2443091, DOI 10.1007/s10208-007-9004-y
- B. Luisa, Handbook of convex geometry, vol. A, Elsevier, North-Holland, Amsterdam, 1993.
- G. K. Luli, Whitney extension for $W_p^k(E)$ in one dimension, Notes available at https://www.math.ucdavis.edu/kluli/ (2008).
- Yunqian Ma and Yun Fu (eds.), Manifold learning theory and applications, CRC Press, Boca Raton, FL, 2012. MR 2964193
- Yue Ma, Chu Wang, and Lihong Zhi, A certificate for semidefinite relaxations in computing positive-dimensional real radical ideals, J. Symbolic Comput. 72 (2016), 1–20. MR 3369048, DOI 10.1016/j.jsc.2014.12.002
- M. F. Roy and N. Vorobjov, Computing the complexification of a semi-algebraic set, ISSAC ’96, 1996, pp. 26–34.
- P. Shvartsman, Extension criteria for homogeneous sobolev spaces of functions of one variable, Rev. Mat. Iberoam. (to appear), arXiv:1812.00817 (2018), https://arxiv.org/abs/1812.00817.
- —, Traces of functions of the Zygmund class, Siberian Math. J. 28 (1987), 853–863.
- Pavel Shvartsman, Lipschitz selections of set-valued mappings and Helly’s theorem, J. Geom. Anal. 12 (2002), no. 2, 289–324. MR 1888519, DOI 10.1007/BF02922044
- P. Shvartsman, Barycentric selectors and a Steiner-type point of a convex body in a Banach space, J. Funct. Anal. 210 (2004), no. 1, 1–42. MR 2051631, DOI 10.1016/S0022-1236(03)00211-8
- Pavel Shvartsman, The Whitney extension problem and Lipschitz selections of set-valued mappings in jet-spaces, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5529–5550. MR 2415084, DOI 10.1090/S0002-9947-08-04469-3
- P. Shvartsman, Sobolev $W^1_p$-spaces on closed subsets of $\textbf {R}^n$, Adv. Math. 220 (2009), no. 6, 1842–1922. MR 2493183, DOI 10.1016/j.aim.2008.09.020
- Pavel Shvartsman, On Sobolev extension domains in $\mathbf R^n$, J. Funct. Anal. 258 (2010), no. 7, 2205–2245. MR 2584745, DOI 10.1016/j.jfa.2010.01.002
- Pavel Shvartsman, Sobolev $L_p^2$-functions on closed subsets of $\mathbf {R}^2$, Adv. Math. 252 (2014), 22–113. MR 3144224, DOI 10.1016/j.aim.2013.10.017
- —, Sobolev functions on closed subsets of the real line, J. Approx. Theory (to appear) 250 (2020), doi: 10.1016/j.jat.2019.105327.
- Pavel Shvartsman and Nahum Zobin, On planar Sobolev $L_p^m$-extension domains, Adv. Math. 287 (2016), 237–346. MR 3422678, DOI 10.1016/j.aim.2015.08.031
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Athipat Thamrongthanyalak, Whitney’s extension theorem in o-minimal structures, Ann. Polon. Math. 119 (2017), no. 1, 49–67. MR 3633962, DOI 10.4064/ap3940-2-2017
- Wiesław Pawłucki, On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 117–125 (1990) (English, with Russian summary). MR 1101459
- John von Neumann, First draft of a report on the EDVAC, IEEE Ann. Hist. Comput. 15 (1993), no. 4, 27–75. Edited and with an introduction by Michael D. Godfrey. MR 1241101, DOI 10.1109/85.238389
- John C. Wells, Differentiable functions on Banach spaces with Lipschitz derivatives, J. Differential Geometry 8 (1973), 135–152. MR 370640
- Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, DOI 10.1090/S0002-9947-1934-1501735-3
- Hassler Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), no. 2, 369–387. MR 1501749, DOI 10.1090/S0002-9947-1934-1501749-3
- Hassler Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. (2) 35 (1934), no. 3, 482–485. MR 1503174, DOI 10.2307/1968745
- Nahum Zobin, Whitney’s problem on extendability of functions and an intrinsic metric, Adv. Math. 133 (1998), no. 1, 96–132. MR 1492787, DOI 10.1006/aima.1997.1685