THE CONCEPTUAL FOUNDATIONS OF QUANTUM MECHANICS

LEONARD EISENBUDE
THE CONCEPTUAL FOUNDATIONS OF QUANTUM MECHANICS
2000 Mathematics Subject Classification. Primary 81–01.

Figures 4-4 and 4-5, pp. 20–21, are used with the kind permission of Education Development Center, Inc. Figures 4-8 and 4-9, pp. 22–23, originally from Jönsson, Zeitschrift für Physik 161, 454, 1961, are used with the kind permission of Springer Science and Business Media.
“There is no end to our searchings:
No generous mind stops within itself. Its pursuits
are without limit; its food is wonder, the chase,
ambiguity.”

Montaigne
There are two complementary methods, broadly speaking, used by authors to communicate physics. In the first of these, the "formal method," the manipulatory skills relating to the subject matter of interest are emphasized. It is tacitly assumed that a mastery of the techniques required to solve the standard problems will lead automatically and rapidly to an understanding of the physical meanings of the techniques and their products. In the second, the "conceptual method," physical meanings are investigated carefully with little attention to technique. Once the basic concepts are clearly understood, or so it is assumed, manipulative skills will take care of themselves. Graduates of the formal method calculate easily (at least on textbook problems) but often they know not what they compute. The conceptual method, on the other hand, produces philosophical wranglers who can tear subtle ideas to shreds but who are unable, perhaps, to draw a fresh conclusion from even the most fruitful stock of ideas.

This book, as its title intimates, makes use of the conceptual method and shares in the weaknesses and, hopefully, also in some of the strengths of that method. The book is not (and this negation deserves
emphasis) a text designed to teach the theory of quantum mechanics; at
the end of the book we shall be only at the edges of the formal
structure and explicit content of the theory. It is not possible to learn
from this book how to solve even the simplest of the problems of
quantum mechanics.

But considerable care and attention is given in what follows to an
analysis of the physical meaning and conceptual consequences of the
Heisenberg principle (Chapters 4, 5, and 6) and, in particular, to a close
examination of the incompatibility of pairs of observables. In Chapters
7 and 8, the effects of the concept of incompatibility on the meanings
of “measurement,” “property,” “state,” “indeterminism,” etc. are
studied. An important step beyond what may reasonably be inferred
from the Heisenberg principle is taken in Chapter 9, where the
existence and great significance of “probability amplitudes” are dis-
cussed. But we refrain even after this fairly considerable preparation from
going on to the implicitly promised land. The structure of quantum
mechanics is not formulated here and its explicit content for classical
observables is not given. To repeat what has already been emphasized,
this book is not intended as an exposition of quantum mechanical
theory.

To whom and for what, then, is the book of value? Two distinct
groups may profit from it. Students who have been exposed to highly
formal expositions and are only too painfully aware that they know not
what they compute may find answers to some of their questions in the
following pages. And those blocked from the normal paths which lead
to the quantum mechanics by lack of mathematical skills may be able
to get here at least a partial understanding of some of the significant
ideas of a most important and fascinating theory.

This book is a revised and expanded version of the monograph I
wrote while a member of the Conference on the New Instructional
Materials in Physics. The Conference was held at Seattle in the summer
of 1965 under the auspices of The Commission on College Physics and
the University of Washington. The materials produced at the Con-
ference were subsequently given limited publication by the University
of Washington Press. I am indebted to The Commission on College
Physics and the University of Washington Press for permission to make
use of portions of the monograph in the preparation of this book.

It is a pleasure to acknowledge my extensive debts to Professor
Walter C. Michels. It was at his suggestion that I undertook to revise and expand my monograph for publication in the Momentum Series. I owe him thanks also for his careful and able editing of my manuscript.

I can best remember again the many who helped me at the Seattle Conference by quoting the last paragraph of the preface to my monograph. "I wish to thank Walter C. Michels and Ernest Henley for their helpful comments and criticisms. I am grateful also to Jack Ludwig and Ralph Caplan for showing me that it is easier to read English than Academese; the numerous changes they suggested greatly improved the style of the monograph. My thanks are due also to the officers of The Commission on College Physics and the University of Washington for their support and assistance during the pleasant, stimulating and productive months of the 'Writing Conference.'"

LEONARD EISENBUD
Contents

Preface vii

1 THE FAILURE OF CLASSICAL THEORY 1

2 CONSEQUENCES OF A MISTRUST OF THEORY 6

3 PROPERTIES OF ELECTRONS, PHOTONS; THE DE BROGLIE RELATIONS 12
 3.1 The de Broglie Relations 14

4 AN ANALYSIS OF ELECTRON DIFFRACTION 17

5 HEISENBERG'S PRINCIPLE OF INDETERMINACY 32
 5.1 Supplement to Chapter 4 37
 5.2 Continuation: Heisenberg's Principle 39

6 INTERPRETATIONS OF THE HEISENBERG PRINCIPLE 42
 6.1 Classical Statistics 42
 6.2 Hidden Variables 45
 6.3 A Nonclassical Interpretation of the Heisenberg Principle 47

7 DYNAMICAL PROPERTIES OF MICROSYSTEMS 57
 7.1 Objective Properties 59
 7.2 Measurement and Property 61
 7.3 Incompatibility 69
 7.4 Observables 73
 7.5 Distributions 77
CONTENTS

8 DETERMINISM AND STATE; STATISTICAL DETERMINISM 89
 8.1 The Principle of Determinism and the Classical Concept of State 89
 8.2 The Principle of Statistical Determinism 95
 8.3 The Microphysical Concept of State 100

9 PROBABILITY AMPLITUDES; THE SUPERPOSITION PRINCIPLE 109
 9.1 Introduction 109
 9.2 The Interference of Electrons 110
 9.3 Probability Amplitudes 113
 9.4 State Representatives 119
 9.5 Motions of Ensembles and States 123
 9.6 The Motion of Free Electrons 126

10 SUMMARY AND COMMENT 130
 10.1 Epitome 130
 10.2 The Laws of Quantum Mechanics 135
 10.3 Consequences of a Successful Theory of Microphysics 139
 10.4 Critical Notes 140
 10.5 Conceptual Revolutions in Physics 141

INDEX 145
Index
INDEX

alpha particle scattering, 8 ff.
amplitude, 110 ff.
average value, 83 ff.

Ballentine, R. L., 47
basis states, 120, 122
Bell, J. S., 47
Bohr, N., 2
Bohr, theory of H atom, 9, 11
classical statistics, 42 ff.
compatible observables, 75
compatible properties, 70
complete sets
of observables, 101
of properties, 74
Compton effect, 3
influence on momentum measurement, 34
de Broglie, 14, 15
de Broglie relations, 37
determinism, 57
classical, 89 ff.
statistical, 95
diffraction
of electrons, 4, 14, 17 ff.
influence on position measurement, 33
of radiation, 4
from slit, 22
Dirac, P. A. M., 5, 36
dispersion, 84
dispersion free, 82
distributions
classical, 78
microphysical, 80
in an observable, 72 ff.
simultaneous measurement of, 83

Einstein, A., 45, 142
electromagnetic force, 13
electron
charge, 12
diffraction and interference, 17 ff., 110
energy frequency relations, 13
energy momentum relations, 13
mass, 12
motion of, 126
ensembles, 41, 45
equivalence of, 83
homogeneous, 105
indecomposable, 105
objectivity of distributions, 82
exclusive property, 70
Franch-Hertz experiment, 2
Geiger Marsden experiment, 8, 9
half-life of neutron, 41
Heisenberg, W., 5
microscope position measurement, 32 ff.
principle, 40, 66
uncertainty relation, 36
hidden variables, 45
homogeneous ensemble, 105
incompatibility
of observables, 75
of properties, 71
interference of electrons, 17, 28, 37, 110
interference patterns, 23 ff.
effect of observation on, 37
intermediate measurement, 86
Jönsson, C., 21, 23
measurement, 57, 61
on distributions, 80
instrument, 64
preparatory, 62, 63
simultaneous position and momentum, 47
mixtures, 107, 108
motion
of ensemble, 101, 123
of free electrons, 126
harmonic, 124
of observable, 76
of state, 124
Newton, 142
Newton's color property, 67
observables, 73 ff.
compatible, 75
INDEX

incompatible, 75
measurement of, 73 ff.
proper states of, 135, 136
operators, 135, 137
commuting, 137
non-commuting, 137

phase space, 43, 44
photoelectric effect, 3
photons, 2, 4, 13, 14
energy frequency relation, 13
Planck's constant, 14, 16
significance of, 55
preparation instrument, 63
probability amplitudes, 110 ff.
probability distributions, 78
property, 57 ff.
compatible, 69
dependent, 94
dynamical, 62
exclusive, 71
fixed, 62
incompatible, 71
independent, 104
objectivity of, 59
state sets of, 101
unobservable, 58, 65
proper states, 135
quantization, 2, 3
quantum mechanics, 47
representative of state, 120

Rutherford model of atom, 3, 9
Rutherford scattering, 8

Schrödinger, E., 5, 15, 36, 122
simultaneous measurement, 47 ff.
spectrum of observable, 135
state, 57, 90 ff.
 classical, 91 ff.
 ensemble, 101
 microphysical, 100
 point, 43, 44
 representative of, 119
 set of properties, 94
 stationary, 103, 125
state properties
 classical, 91 ff.
 complete set of, 101
 independent, 94
 microphysical, 61 ff.
statistical determinism, 99 ff.
superposition principle, 118, 124
test instrument, 67
test measurement, 62
uncertainty, 83 ff.
von Neumann, 46
wave particle dualism, 3
wave length
 of electron, 16
 of photon, 16
wave length,