Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


A Dynamical Approach to Random Matrix Theory

About this Title

László Erdős, Institute of Science and Technology Austria, Klosterneuburg, Austria and Horng-Tzer Yau, Harvard University, Cambridge, MA

Publication: Courant Lecture Notes
Publication Year: 2017; Volume 28
ISBNs: 978-1-4704-3648-3 (print); 978-1-4704-4194-4 (online)
DOI: https://doi.org/10.1090/cln/028
MathSciNet review: MR3699468
MSC: Primary 60B20; Secondary 15B52, 60F10, 82B44

Read more about this volume

View other years and volumes:

Table of Contents

Front/Back Matter

Chapters

View full volume PDF

References [Enhancements On Off] (What's this?)

References
  • Aizenman, M., and Molchanov, S. Localization at large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys. 157(2):245–278, 1993.
  • Aizenman, M., Sims, R., and Warzel, S. Absolutely continuous spectra of quantum tree graphs with weak disorder. Comm. Math. Phys. 264(2):371–389, 2006. \doi{10.1007/s00220-005-1468-5}
  • Aizenman, M., and Warzel, S. The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4):291–333 (2007), 2006. \doi{10.1007/s11040-007-9018-3}
  • Ajanki,O., Erdős, L., and Krüger, T. Quadratic vector equations on complex upper half-plane. Preprint, 2015. \arxiv{1506.05095} [math.PR].
  • —. Universality for general Wigner-type matrices. Probab. Theory Relat. Fields, to appear. \doi{10.1007/s00440-016-0740-2}.
  • Gernot Akemann, Jinho Baik, and Philippe Di Francesco (eds.), The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2011. MR 2920518
  • Anantharaman, N., and Le Masson, E. Quantum ergodicity on large regular graphs. Duke Math. J. 164(4):723–765, 2015. \doi{10.1215/00127094-2881592}
  • Anderson, G. W., Guionnet, A., and Zeitouni, O. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010.
  • Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109(5):1492–1505, 1958. \doi{10.1103/PhysRev.109.1492}
  • Bai, Z. D. Convergence rate of expected spectral distributions of large random matrices. I. Wigner matrices. Ann. Probab. 21(2):625–648, 1993.
  • Bai, Z. D., Miao, B., and Tsay, J. Convergence rates of the spectral distributions of large Wigner matrices. Int. Math. J. 1(1):65–90, 2002.
  • Bai, Z. D., and Yin, Y. Q. Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21(3):1275–1294, 1993.
  • Bakry, D., and Émery, M. Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, 177–206. Lecture Notes in Mathematics, 1123. Springer, Berlin, 1985. \doi{10.1007/BFb0075847}
  • Bao, Z., and Erdős, L. Delocalization for a class of random block band matrices. Probab. Theory Related Fields 1–104, 2016. \doi{10.1007/s00440-015-0692-y}
  • Bao, Z., Erdős, L., and Schnelli, K. Local law of addition of random matrices on optimal scale. Comm. Math. Phys. 349(3):947–990, 2017. \doi{10.1007/s00220-016-2805-6}
  • Bauerschmidt, R., Huang, J., Knowles, A., and Yau, H.-T. Bulk eigenvalue statistics for random regular graphs. Preprint, 2015. \arxiv{1505.06700} [math.PR].
  • Bauerschmidt, R., Knowles, A., and Yau, H.-T. Local semicircle law for random regular graphs. Preprint, 2015. \arxiv{1503.08702} [math.PR].
  • Bekerman, F., Figalli, A., and Guionnet, A. Transport maps for $\beta$-matrix models and universality. Comm. Math. Phys. 338(2):589–619, 2015. \doi{10.1007/s00220-015-2384-y}
  • Ben Arous, G., and Péché, S. Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58(10):1316–1357, 2005. \doi{10.1002/cpa.20070}
  • Bleher, P., and Its, A. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150(1):185–266, 1999. \doi{10.2307/121101}
  • Bloemendal, A., Erdős, L., Knowles, A., Yau, H.-T., and Yin, J. Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19(33):53 pp., 2014.
  • Bloemendal, A., Knowles, A, Yau, H.-T., and Yin, J. On the principal components of sample covariance matrices. Probab. Theory Related Fields 164(1-2):459–552, 2016. \doi{10.1007/s00440-015-0616-x}
  • Bourgade, P., Erdős, L., and Yau, H.-T. Bulk universality of general $\beta$-ensembles with non-convex potential. J. Math. Phys. 53(9):095221, 19 pp., 2012. \doi{10.1063/1.4751478}
  • —. Edge universality of beta ensembles. Comm. Math. Phys. 332(1):261–353, 2014. \doi{10.1007/s00220-014-2120-z}
  • —. Universality of general $\beta$-ensembles. Duke Math. J. 163(6):1127–1190, 2014. \doi{10.1215/00127094-2649752}
  • Bourgade, P., Erdős, L., Yau, H.-T., and Yin, J. Fixed energy universality for generalized Wigner matrices. Comm. Pure Appl. Math. 69(10):1815–1881, 2016. \doi{10.1002/cpa.21624}
  • —. Universality for a class of random band matrices. Preprint, 2016. \arxiv{1602.02312} [math.PR].
  • Bourgade, P., and Yau, H.-T. The eigenvector moment flow and local quantum unique ergodicity. Comm. Math. Phys. 1–48, 2016. \doi{10.1007/s00220-016-2627-6}
  • Brascamp, H. J., and Lieb, E. H. Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Advances in Math. 20(2):151–173, 1976. \doi{10.1016/0001-8708(76)90184-5}
  • Brézin, E., and Hikami, S. Correlations of nearby levels induced by a random potential. Nuclear Phys. B 479(3):697–706, 1996. \doi{10.1016/0550-3213(96)00394-X}
  • —. Spectral form factor in a random matrix theory. Phys. Rev. E (3) 55(4):4067–4083, 1997. \doi{10.1103/PhysRevE.55.4067}
  • Cacciapuoti, C., Maltsev, A., and Schlein, B. Bounds for the Stieltjes transform and the density of states of Wigner matrices. Probab. Theory Related Fields 163(1-2):1–59, 2015. \doi{10.1007/s00440-014-0586-4}
  • Carlen, E. A., and Loss, M. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation. Duke Math. J. 81(1):135–157 (1996), 1995. \doi{10.1215/S0012-7094-95-08110-1}
  • Chen, T. Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3. J. Stat. Phys. 120(1):279–337, 2005. \doi{10.1007/s10955-005-5255-7}
  • Colin de Verdière, Y. Ergodicité et fonctions propres du laplacien. Comm. Math. Phys. 102(3):497–502, 1985.
  • Davies, E. B. The functional calculus. J. London Math. Soc. (2) 52(1):166–176, 1995. \doi{10.1112/jlms/52.1.166}
  • Deift, P. A. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, R.I., 1999.
  • Deift, P., and Gioev, D. Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Comm. Pure Appl. Math. 60(6):867–910, 2007. \doi{10.1002/cpa.20164}
  • —. Universality in random matrix theory for orthogonal and symplectic ensembles. Int. Math. Res. Pap. 2007(2):116, Art. ID rpm004, 2007. \doi{10.1093/imrp/rpm004}
  • —. Random matrix theory: invariant ensembles and universality. Courant Lecture Notes in Mathematics, 18. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, R.I., 2009. \doi{10.1090/cln/018}
  • Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S., and Zhou, X. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52(12):1491–1552, 1999. \doi{10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R}
  • —. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11):1335–1425, 1999. \doi{10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1}
  • Deuschel, J.-D., and Stroock, D. W. Large deviations. Pure and Applied Mathematics, 137. Academic Press, Boston, 1989.
  • Disertori, M., Pinson, H., and Spencer, T. Density of states for random band matrices. Comm. Math. Phys. 232(1):83–124, 2002. \doi{10.1007/s00220-002-0733-0}
  • Dyson, F. J. A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys. 3:1191–1198, 1962. \doi{10.1063/1.1703862}
  • —. Statistical theory of the energy levels of complex systems. I, II, III. J. Mathematical Phys. 3:140–156, 1962. \doi{10.1063/1.1703773}
  • —. Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 19:235–250, 1970.
  • Edmunds, D. E., and Triebel, H. Sharp Sobolev embeddings and related Hardy inequalities: the critical case. Math. Nachr. 207:79–92, 1999. \doi{10.1002/mana.1999.3212070105}
  • Efetov, K. Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge, 1997.
  • Erdős, L., and Knowles, A. Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12(7):1227–1319, 2007. \doi{10.1007/s00023-011-0104-5}
  • —. Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303(2):509–554, 2011. \doi{10.1007/s00220-011-1204-2}
  • Erdős, L., Knowles, A., and Yau, H.-T. Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 14(8):1837–1926, 2013. \doi{10.1007/s00023-013-0235-y}
  • Erdős, L., Knowles, A., Yau, H.-T., and Yin, J. Spectral statistics of Erdős-Rényi Graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 314(3):587–640, 2012. \doi{10.1007/s00220-012-1527-7}
  • —. Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323(1):367–416, 2013. \doi{10.1007/s00220-013-1773-3}
  • —. The local semicircle law for a general class of random matrices. Electron. J. Probab. 18(59):58 pp., 2013. \doi{10.1214/EJP.v18-2473}
  • —. Spectral statistics of Erdős-Rényi graphs I: Local semicircle law. Ann. Probab. 41(3B):2279–2375, 2013. \doi{10.1214/11-AOP734}
  • Erdős, L., Péché, S., Ramírez, J. A., Schlein, B., and Yau, H.-T. Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63(7):895–925, 2010. \doi{10.1002/cpa.20317}
  • Erdős, L., Ramírez, J., Schlein, B., Tao, T., Vu, V., and Yau, H.-T. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17(4):667–674, 2010. \doi{10.4310/MRL.2010.v17.n4.a7}
  • Erdős, L., Ramírez, J. A., Schlein, B., and Yau, H.-T. Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15(18):526–603, 2010. \doi{10.1214/EJP.v15-768}
  • Erdős, L., Schlein, B., and Yau, H.-T. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287(2):641–655, 2009. \doi{10.1007/s00220-008-0636-9}
  • —. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3):815–852, 2009. \doi{10.1214/08-AOP421}
  • —. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN 2010(3):436–479, 2010. \doi{10.1093/imrn/rnp136}
  • —. Universality of random matrices and local relaxation flow. Invent. Math. 185(1):75–119, 2011. \doi{10.1007/s00222-010-0302-7}
  • Erdős, L., Schlein, B., Yau, H.-T., and Yin, J. The local relaxation flow approach to universality of the local statistics for random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48(1):1–46, 2012. \doi{10.1214/10-AIHP388}
  • Erdős, L., and Schnelli, K. Universality for random matrix flows with time-dependent density. Preprint, 2015. \arxiv{1504.00650} [math.PR].
  • Erdős, L., and Yau, H.-T. A comment on the Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices. Electron. J. Probab. 17(28):5 pp., 2012. \doi{10.1214/EJP.v17-1779}
  • —. Gap universality of generalized Wigner and $\beta$-ensembles. J. Eur. Math. Soc. (JEMS) 17(8):1927–2036, 2015. \doi{10.4171/JEMS/548}
  • Erdős, L., Yau, H.-T., and Yin, J. Universality for generalized Wigner matrices with Bernoulli distribution. J. Comb. 2(1):15–81, 2011. \doi{10.4310/JOC.2011.v2.n1.a2}
  • —. Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154(1-2):341–407, 2012. \doi{10.1007/s00440-011-0390-3}
  • —. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3):1435–1515, 2012. \doi{10.1016/j.aim.2011.12.010}
  • Firk, F. W. K., and Miller, S. J. Nuclei, primes and the random matrix connection. Symmetry 1:64–105. \doi{10.3390/sym1010064}
  • Fokas, A. S., It·s, A. R., and Kitaev, A. V. The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147(2):395–430, 1992. \doi{10.1007/BF02096594}
  • Forrester, P. J. Log-gases and random matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, N.J., 2010. \doi{10.1515/9781400835416}
  • Fröhlich, J., and Spencer, T. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys. 88(2):151–184, 1983.
  • Fukushima, M., Ōshima, Y., and Takeda, M. Dirichlet forms and symmetric Markov processes. De Gruyter Studies in Mathematics, 19. Walter de Gruyter, Berlin, 1994. \doi{10.1515/9783110889741}
  • Fyodorov, Y. V., and Mirlin, A. D. Scaling properties of localization in random band matrices: a $\sigma$-model approach. Phys. Rev. Lett. 67(18):2405–2409, 1991. \doi{10.1103/PhysRevLett.67.2405}
  • Girko, V. L. Asymptotics of the distribution of the spectrum of random matrices. Translated from Uspekhi Mat. Nauk 44(4(268)):7–34, 256, 1989; Russian Math. Surveys 44(4):3–36, 1989. \doi{10.1070/RM1989v044n04ABEH002143}
  • Götze, F., Naumov, A., and Tikhomirov, A. Local semicircle law under moment conditions. Part I: The Stieltjes transform. Preprint, 2015. \arxiv{1510.07350} [math.PR].
  • Gross, L. Logarithmic Sobolev inequalities. Amer. J. Math. 97(4):1061–1083, 1975. \doi{10.2307/2373688}
  • Guionnet, A., and Zeitouni, O. Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5:119–136, 2000. \doi{10.1214/ECP.v5-1026}
  • Helffer, B., and Sjöstrand, J. On the correlation for Kac-like models in the convex case. J. Statist. Phys. 74(1-2):349–409, 1994. \doi{10.1007/BF02186817}
  • Holowinsky, R. Sieving for mass equidistribution. Ann. of Math. (2) 172(2):1499–1516, 2010.
  • Holowinsky, R., and Soundararajan, K. Mass equidistribution for Hecke eigenforms. Ann. of Math. (2) 172(2):1517–1528, 2010.
  • Huang, J., Landon, B., and Yau, H.-T. Bulk universality of sparse random matrices. J. Math. Phys. 56(12):123301, 19 pp., 2015. \doi{10.1063/1.4936139}
  • Itzykson, C., and Zuber, J. B. The planar approximation. II. J. Math. Phys. 21(3):411–421, 1980. \doi{10.1063/1.524438}
  • Johansson, K. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215(3):683–705, 2001. \doi{10.1007/s002200000328}
  • Klein, A. Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett. 1(4):399–407, 1994. \doi{10.4310/MRL.1994.v1.n4.a1}
  • Knowles, A., and Yin, J. Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155(3-4):543–582, 2013. \doi{10.1007/s00440-011-0407-y}
  • —. The isotropic semicircle law and deformation of Wigner matrices. Comm. Pure Appl. Math. 66(11):1663–1750, 2013. \doi{10.1002/cpa.21450}
  • —. Anisotropic local laws for random matrices. Probab. Theory Relat. Fields 2016, 1–96. \doi{10.1007/s00440-016-0730-4}
  • Kriecherbauer, T., and Shcherbina, M. Fluctuations of eigenvalues of matrix models and their applications. Preprint, 2010. \arxiv{1003.6121}. [math-ph].
  • Krishnapur, M., Rider, B., and Virág, B. Universality of the stochastic Airy operator. Comm. Pure Appl. Math. 69(1):145–199, 2016. \doi{10.1002/cpa.21573}
  • Landon, B., and Yau, H.-T. Convergence of local statistics of Dyson Brownian motion. Comm. Math. Phys., to appear.
  • Lee, J. O., and Schnelli, K. Local deformed semicircle law and complete delocalization for Wigner matrices with random potential. J. Math. Phys. 54(10):103504, 62 pp., 2013. \doi{10.1063/1.4823718}
  • —. Edge universality for deformed Wigner matrices. Rev. Math. Phys. 27(8):1550018, 94 pp., 2015. \doi{10.1142/S0129055X1550018X}
  • —. Tracy–Widom distribution for the largest eigenvalue of real sample covariance matrices with general population. Ann. Appl. Probab. 26(6):3786–3839, 2016. \doi{10.1214/16-AAP1193}
  • Lee, J. O., Schnelli, K., Stetler, B., and Yau, H.-T. Bulk universality for deformed Wigner matrices. Ann. Probab. 44(3):2349–2425, 2016. \doi{10.1214/15-AOP1023}
  • Lee, J. O., and Yin, J. A necessary and sufficient condition for edge universality of Wigner matrices. Duke Math. J. 163(1):117–173, 2014. \doi{10.1215/00127094-2414767}
  • Levin, E., and Lubinsky, D. S. Universality limits in the bulk for varying measures. Adv. Math. 219(3):743–779, 2008. \doi{10.1016/j.aim.2008.06.010}
  • Lieb, E. H., and Loss, M. Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 2001. \doi{10.1090/gsm/014}
  • Lindenstrauss, E. Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2) 163(1):165–219, 2006. \doi{10.4007/annals.2006.163.165}
  • Lubinsky, D. S. A new approach to universality limits involving orthogonal polynomials. Ann. of Math. (2) 170(2):915–939, 2009. \doi{10.4007/annals.2009.170.915}
  • Lytova, A., and Pastur, L. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5):1778–1840, 2009. \doi{10.1214/09-AOP452}
  • Marčenko, V. A., and Pastur, L. A. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72(114):507–536, 1967.
  • Mehta, M. L. A note on correlations between eigenvalues of a random matrix. Comm. Math. Phys. 20:245–250, 1971.
  • —. Random matrices. Second edition. Academic Press, Boston, 1991.
  • Mehta, M. L., and Gaudin, M. On the density of eigenvalues of a random matrix. Nuclear Phys. 18:420–427, 1960.
  • Minami, N. Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys. 177(3):709–725, 1996.
  • Naddaf, A., and Spencer, T. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183(1):55–84, 1997. \doi{10.1007/BF02509796}
  • Pastur, L. A. Spectra of random selfadjoint operators. Uspehi Mat. Nauk 28(1(169)):3–64, 1973.
  • Pastur, L., and Shcherbina, M. On the edge universality of the local eigenvalue statistics of matrix models. Mat. Fiz. Anal. Geom. 10(3):335–365, 2003.
  • —. Bulk universality and related properties of Hermitian matrix models. J. Stat. Phys. 130(2):205–250, 2008. \doi{10.1007/s10955-007-9434-6}
  • —. Eigenvalue distribution of large random matrices. Mathematical Surveys and Monographs, 171. American Mathematical Society, Providence, R.I., 2011. \doi{10.1090/surv/171}
  • Pillai, N. S., and Yin, J. Universality of covariance matrices. Ann. Appl. Probab. 24(3):935–1001, 2014. \doi{10.1214/13-AAP939}
  • Rudnick, Z., and Sarnak, P. The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161(1):195–213, 1994.
  • Schenker, J. Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290(3):1065–1097, 2009. \doi{10.1007/s00220-009-0798-0}
  • Shcherbina, M. Edge universality for orthogonal ensembles of random matrices. J. Stat. Phys. 136(1):35–50, 2009. \doi{10.1007/s10955-009-9766-5}
  • —. Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Zh. Mat. Fiz. Anal. Geom. 7(2):176–192, 197, 199, 2011.
  • —. Change of variables as a method to study general $\beta$-models: bulk universality. J. Math. Phys. 55(4):043504, 23 pp., 2014. \doi{10.1063/1.4870603}
  • Shcherbina, T. On the second mixed moment of the characteristic polynomials of 1D band matrices. Comm. Math. Phys. 328(1):45–82, 2014. \doi{10.1007/s00220-014-1947-7}
  • —. Universality of the local regime for the block band matrices with a finite number of blocks. J. Stat. Phys. 155(3):466–499, 2014. \doi{10.1007/s10955-014-0964-4}
  • —. Universality of the second mixed moment of the characteristic polynomials of the 1D band matrices: real symmetric case. J. Math. Phys. 56(6):063303, 23 pp., 2015. \doi{10.1063/1.4922621}
  • Šnirel′man, A. I. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29(6(180)):181–182, 1974.
  • Sodin, S. The spectral edge of some random band matrices. Ann. of Math. (2) 172(3):2223–2251, 2010. \doi{10.4007/annals.2010.172.2223}
  • Soshnikov, A. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207(3):697–733, 1999. \doi{10.1007/s002200050743}
  • Spencer, T. Random banded and sparse matrices. The Oxford handbook of random matrix theory, 471–488. Oxford University Press, Oxford, 2011.
  • Stroock, D. W. Probability theory, an analytic view. Cambridge University Press, Cambridge, 1993.
  • Tao, T. Topics in random matrix theory. Graduate Studies in Mathematics, 132. American Mathematical Society, Providence, R.I., 2012. \doi{10.1090/gsm/132}
  • —. The asymptotic distribution of a single eigenvalue gap of a Wigner matrix. Probab. Theory Related Fields 157(1-2):81–106, 2013. \doi{10.1007/s00440-012-0450-3}
  • Tao, T., and Vu, V. Random matrices: localization of the eigenvalues and the necessity of four moments. Acta Math. Vietnam. 36(2):431–449, 2011.
  • —. Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1):127–204, 2011. \doi{10.1007/s11511-011-0061-3}
  • —. The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices. Electron. J. Probab. 16(77):2104–2121, 2011. \doi{10.1214/EJP.v16-944}
  • —. Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl. 1(1):1150001, 27 pp., 2012. \doi{10.1142/S2010326311500018}
  • Tracy, C. A., and Widom, H. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159(1):151–174, 1994.
  • —. On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177(3):727–754, 1996.
  • Valkó, B., and Virág, B. Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3):463–508, 2009. \doi{10.1007/s00222-009-0180-z}
  • Voiculescu, D. Limit laws for random matrices and free products. Invent. Math. 104(1):201–220, 1991. \doi{10.1007/BF01245072}
  • Wigner, E. P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2) 62:548–564, 1955. \doi{10.2307/1970079}
  • Wishart, J. The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1/2):32–52, 1928. \doi{10.2307/2331939}
  • Yau, H.-T. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1):63–80, 1991. \doi{10.1007/BF00400379}
  • Zelditch, S. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4):919–941, 1987. \doi{10.1215/S0012-7094-87-05546-3}