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Preface

This book is intended primarily as enrichment material for courses in first and second year
calculus. It also has material suitable for use in differential equations and introductory real
analysis. We endeavor to offer an engaging combination of topics at a challenging, yet accessible
level. The book targets talented and well-motivated students and can be used in a variety of
settings, such as honors courses, undergraduate seminars, independent study, capstone courses
taking a fresh look at calculus, and summer enrichment programs.

Our primary goal in writing the book is to impart a deeper understanding of and facility
with the mathematical reasoning that lies at the heart of calculus and to convey something of its
beauty and depth.

There are sixteen chapters in the book, divided about equally between pure and applied
mathematics. The first three chapters are on fundamentals of differential calculus. The last three
are on the monumental discoveries of Newton and Kepler on celestial motion and gravitation.
The intervening chapters present significant topics in pure and applied mathematics chosen
for their intrinsic interest, historical influence, and continuing importance. The book develops
topics from novel or unifying perspectives. Thus, we hope and expect that it will be a valuable
resource for graduate teaching assistants as they develop their academic and pedagogical skills
and be informative to seasoned veterans who appreciate fresh perspectives.

The chapters of the book are written to be largely independent of each other. There are
occasional references to results from earlier chapters but adjustments appropriate to the situation
at hand are easily made.

The book had its origin in a 1–2 hour per week undergraduate honors seminar at Oregon
State University. The students in the seminar were enrolled in the department’s regular 4-credit
science and engineering calculus sequence. Seminar students took turns presenting various
calculus topics or applications to their colleagues for critical discussion. Those not presenting
material turned in polished written reports. This format motivated the oral or written projects
that accompany each chapter of the book. By all accounts, the seminar was very successful.

Students in the honors seminar were mostly mathematics, physics, and engineering majors.
The topics in the seminar and in the book reflect that.

The genesis of the book suggests the students for whom it is written: well-motivated,
talented students who desire to understand both calculus and its applications at a deeper level.

Beginning calculus courses assume implicitly or explicitly that the rational numbers are
dense in the reals and that the real number system is complete. They also use the max-min
theorem, the intermediate value theorem, and the existence of least upper bounds and greatest

xi
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lower bounds without proof. We abide by these norms. These underpinnings of calculus are
displayed just before Chapter 1 for ease of reference and to reinforce their importance.

The enrichment materials assume some prior exposure to calculus. The students should
have completed the better part of a standard “plug and chug” introduction to calculus. However,
suitably delivered parts of the first three chapters have been used in the first term of a standard
calculus sequence.

Logical reasoning skills at the level of proof in Euclidean geometry are all that is needed for
productive use of these materials. Nevertheless, a high level of rigor is maintained. The book is
logically complete in the sense that proofs of theorems and other conclusions are given at least
in summary form with easier steps left to the reader. With few exceptions, proofs depend only
on tools from calculus and earlier mathematics. Analytical arguments are carefully structured
to avoid epsilons and deltas. This keeps the presentation friendly and accessible to students at
several levels of mathematical maturity.

Virtually all the chapters are natural complements to a first course on real analysis. Students
can see for themselves how the results they are learning in real analysis arose out of the need
and desire to set calculus on a firm foundation.

Mathematical modeling is an integral part of many chapters. The mathematical and physical
assumptions on which a model stands are clearly stated, expected attributes of a model are
confirmed mathematically, and its predictions are carefully examined. The enrichment topics
for these chapters are natural supplements for a course in differential equations or a modeling
course.

The first three chapters of the book, on fundamentals of differential calculus, play a unique
role. On the one hand, they present some fundamental topics in novel and more unified ways
than in standard calculus textbooks. On the other hand, key reasoning skills are developed and
the refinements and techniques introduced play a role in developing the theory in later chapters,
especially the applied chapters. We encourage students primarily interested in the applications
chapters not to overlook the first three chapters.

The reader may wonder why we refer to integral tables or use techniques of integration
in the age of symbolic integrators. The reason is simple. They are still useful. In fact, one of
the most effective uses of a change of variable in an integral is to transform the integral to an
alternative form that is more informative for theoretical purposes or more suitable for numerical
purposes. A case in point is the transformation of an elliptic integral in Chapter 13.

The next to last section of each chapter is Problems and Remarks. The problems are
invitations to readers to complete arguments merely sketched in the main text, to extend particular
results in the chapter, or just to establish interesting related results. The remarks vary from
chapter to chapter. They typically contain historical background and comments that extend or
enrich the main results of the chapter.

Every chapter ends with a section titled Further Reading and Projects. There is a short list
of references that are germane to the chapter. Each project is presented in an outline form that
should help a student prepare a complete oral or written presentation. The projects vary quite a
lot. Some may approach the principal results of the chapter from a different perspective. Others
may lead the student in a fresh but related direction.

A student could read this book on his or her own. However, we believe the mathematical
experience will be much better if supported by a faculty mentor or, even better, takes place in a
seminar setting.
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Chapter Highlights
An overview of the sixteen chapters follows.

Chapter 1 Critical Points and Graphing Critical points of functions defined on intervals play
central roles in calculus, especially in the solution of max-min problems. Less well known is the
fact that, for virtually all functions defined on intervals that come up in calculus, the intervals
where a function f increases or decreases are determined by the behavior of f at its critical
points and at the endpoints of these intervals. Similarly, the intervals where f is concave up or
down are determined by the behavior of f ′ at critical points of f ′ and at endpoints of intervals of
its domain. Moreover, the critical points determine the sign patterns of f ′and f ′′ by inspection,
without the need for any work with inequalities. This is the easiest way to determine the sign
patterns, especially for transcendental functions. A useful by-product of this point of view is
a refinement of standard curve sketching techniques, which we call the critical point graphing
method. The refinement is simpler to use, requires less work, and is especially advantageous
when applied to transcendental functions.

Chapter 2 Inverse Functions The treatment of inverse functions in calculus can be consid-
erably simplified and unified compared to the now standard approach to these functions. The
standard approach defines inverse functions in the general context of one-to-one maps of ab-
stract sets. The important inverse functions of calculus are then treated case-by-case in a way
that often implicitly assumes continuity of the inverse function as well as differentiability, when
derivative formulas are established.

We present a unified approach to the important inverse functions of calculus. It shows that
inverse functions inherit, free of charge, monotonicity, continuity, and differentiability of the
primary function.

The key to the approach is to recognize that virtually all one-to-one functions (those
functions that have inverses) that arise naturally in calculus are continuous and have interval
domains. We prove by elementary means the geometrically compelling result that all continuous
one-to-one functions on interval domains are monotonic (increasing or decreasing). Therefore,
the one-to-one functions of interest in calculus are monotonic, continuous, and have interval
domains. It turns out that restricting the discussion of inverse functions to such functions is a
major simplification. It means that many significant conclusions about the relationship between
a function and its inverse have obvious graphical interpretations that lead to natural proofs and
the unified treatment we give.

Chapter 3 Exponential and Logarithmic Functions Exponential functions ax for a > 1
and for 0 < a < 1 play an essential role throughout calculus as do their inverse functions,
the logarithmic functions. Although it is natural to introduce them in beginning differential
calculus, a fully satisfactory approach that gets these functions in the game early and establishes
their differentiability in a mathematically satisfying way has proved challenging. We present
an approach that is an attractive alternative to deferring essential features of exponentials and
logarithms to the integral calculus.

We present a direct proof that exponential functions are differentiable. It is based entirely
on tools from differential calculus or earlier mathematics. The proof is motivated by familiar
geometric properties of graphs of exponential functions and involves squeezing arguments
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similar to those used to show that the trigonometric functions are differentiable. This makes
it possible to give a comprehensive treatment of the derivative properties of exponential and
logarithmic functions within the scope of differential calculus.

Chapter 4 Linear Approximation and Newton’s Method From its inception, calculus pro-
vided effective and systematic means of approximation. Initially the methods were used to
accurately evaluate exponential, logarithmic, trigonometric, and root functions as well as to
determine roots of equations. The first steps in these developments were linear approximation
(tangent line approximation) and Newton’s (root-finding) method. To be useful, approximation
schemes must include effective means of estimating the error and must provide a strategy that
enables any desired degree of precision to be achieved. This chapter addresses these issues for
linear approximation and Newton’s method. The analysis is motivated by convincing geometric
reasoning and made precise by arguments based on monotonicity and concavity. In particular,
the treatment of Newton’s method establishes easily identified initial guesses for which the New-
ton approximations will converge monotonically to a particular root for virtually any function
of a single variable likely to come up in applications.

Chapter 5 Taylor Polynomial Approximation Taylor polynomial approximation is the natural
extension of linear approximation. In linear approximation, the value of a function and its
derivative are matched at a base point. Higher order Taylor polynomials simply extend this idea
by matching successively higher order derivatives at the base point. Our treatment of the error in
Taylor polynomial approximation is novel and builds on the treatment in Chapter 4 of the error in
linear approximation. Geometric ideas based on monotonicity remain front and center. The key
to error estimates in linear approximation is that the linear approximation is squeezed between
two natural quadratic approximations. This approach extends directly to higher order Taylor
polynomials. We show that all the standard error results for Taylor polynomial approximation
follow from corresponding squeezing results. All the results come from repeated application of
an evident fact: If f ′ ≥ 0 on an interval I, then f is nondecreasing on I.

Chapter 6 Global Extreme Values In principle, the standard critical point method for solving
max-min problems for functions of one variable extends to functions of two or more variables.
However, in practice it is typically more challenging to carry out the procedure. The primary
challenges come from the fact that the boundary of the domain of interest often contains
infinitely many points and from the difficulty of showing that extreme values exist, especially
for domains that are not closed or are unbounded.

In this chapter, we present a two-step max-min method that is easier to carry out, when
applicable. The method is a special instance of a general principle that taking advantage of
certain symmetries in a problem can greatly simplify its solution. Here the symmetry involves
the expression for the function as it relates to its domain. The domain is represented as a family
of lines or curves, usually tailored to the form of the objective function f or the shape of its
domain D. Extreme values are calculated first for f on the lines or curves and then for f on D.

Thus, a two-dimensional problem is reduced to two one-dimensional problems. In this approach,
the existence and values of extrema are established at the same time.

Chapter 7 Angular Velocity and Curvature The relationship between angular velocity and
curvature is quite informative, but it is usually not mentioned in standard treatments of calculus.
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The connection is informative both from a geometric perspective and from the point of view
of connections with rotational motion. We present such connections. Curvature is typically
introduced as an angular rate of change for plane curves and as the rate of change of the
magnitude of the unit tangent vector for space curves. The approaches are not reconciled. We
present a unified approach to curvature for plane and space curves based on the rate of change of
a natural angle. The standard formulas for the curvature of plane and space curves are obtained
along the way by simple geometric arguments.

Chapter 8 π and e are Irrational Intriguing properties of numbers of special significance to
mathematics, such as π and e, have attracted mathematicians throughout the ages. In this chapter
we use lines of reasoning introduced by the distinguished American number theorist Ivan Niven
to show that π and e are irrational, and give extensions of his results. Niven’s arguments use
only ideas of beginning calculus, particularly repeated applications of integrations by parts.
They greatly simplify related ideas used by Hermite to prove that e is transcendental.

Chapter 9 Hanging Cables This is the first of eight chapters devoted to applications of
mathematics to the world around us. The study of hanging cables (whether transmission lines
or clotheslines) is a natural starting point. Everyday experience and simple experiments give a
general idea of what to expect, but more insight can be gained by developing a mathematical
model.

What is the shape of a hanging cable? That question came up early and the answer given
by Galileo, a parabola, proved to be incorrect. How is tension in a cable related to its sag?
A qualitative answer is clear. What is the precise relationship? How do cable properties and
economic considerations interact? A mathematical model yields quantitative answers to such
questions. The model is constructed by determining the forces acting on a segment of the cable.
Tensions along the cable act tangentially and the force of gravity acts vertically. Since the cable
is not in motion (it is not a cable on the Tacoma Narrows bridge!) the net force must be zero.
This leads to a differential equation that can be solved by two integrations. Questions such as
those posed above are discussed.

Chapter 10 The Buffon Needle Problem Several path-breaking developments in mathematics
and its applications had their origins in seemingly frivolous problems. The Buffon needle
problem is an example: Toss a needle on a hardwood floor. What is the probability that the needle
touches one of the parallel lines between the wooden strips? An experimental determination of
the probability was made in 1850 by Rudolf Wolf who tossed a needle over his shoulder 5,000
times and counted the number of crossings. The experiment can be regarded as a precursor
of modern Monte Carlo methods that have far reaching applications, including the absorption
of neutrons in a nuclear reactor. The original Buffon needle problem leads to a surprising
connection to π. It also leads to a geometric view of probabilities in terms of areas. Laplace
considered a natural extension of Buffon’s problem for which the solution uses geometric
probability and multiple integrals.

Chapter 11 Optimal Location Optimal location problems typically occur in large-scale
industrial and public works projects where a site for a factory, power plant, or whatever needs to
be determined to minimize certain costs. In this chapter we consider the problem of the optimal
location of a power plant being built to serve three factories. Cost factors, such as the construction
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of power lines and electrical leakage along them, are modeled as proportional to the dis-
tance of each factory from the site of the power plant. Analysis of the mathematical model
that results involves both simple geometric arguments and critical point analysis. A unique
optimal location is shown to exist. When standard critical point analysis is used to find the
optimal location what emerges is an elegant geometric condition that characterizes the location
but gives no explicit determination for it. Numerical methods are needed to approximate the
optimal location. Methods based on successive approximations are discussed and numerical
examples are given.

Chapter 12 Energy Work is a staple of one-variable integral calculus but energy is almost
always deferred until multivariable calculus. This is unfortunate because the two topics are
closely related and several topics that can enrich integral calculus are lost in the process.

This chapter is concerned with the energy of an object moving under the action of a external
force, particularly the force of gravity. After a brief introduction to kinetic and potential energy,
the principle of conservation of energy is derived by elementary means. It is illustrated first by
the familiar example of a ball thrown up into the air in the presence of the presumed constant
force of gravity. The kinetic energy of the ball is transformed into potential energy on the
upward flight and back into kinetic energy on the downward flight. Next, a projectile launched
vertically from the Earth is acted on by the variable force of gravity given by Newton’s law of
gravitation. Comparisons of kinetic and potential energy yield the escape velocity that is the
minimum launch velocity for which the projectile flies off into space, never to return to the
Earth.

Chapter 13 Springs and Pendulums An understanding of oscillatory motion is central to
the development of accurate clocks, the design of machinery, and the properties of atoms. For
these reasons as well as for its historical significance, we discuss simple harmonic motion and
pendulum motion. The presentation of simple harmonic motion serves as a gentle introduction
to the use of linear differential equations to study motion problems. Uniqueness of the solution
to an associated initial value problem is treated in an ad hoc manner and then related to
conservation of energy. The pendulum serves as an introduction to motion governed by a
nonlinear differential equation. A first integral of the second order pendulum equation is found,
essentially by conservation of energy methods. The subsequent discussion focuses on the period
of the pendulum and leads to an elliptic integral for the period. We approximate the period both
by a small angle approximation and by the binomial series. Computable error bounds based on
the geometric series are given.

Chapter 14 Kepler’s Laws of Planetary Motion After decades of observations and calcula-
tions, the eminent German astronomer Johannes Kepler discovered the three laws of planetary
motion that bear his name. A half century later, Isaac Newton built on Kepler’s laws to discover
the law of universal gravitation and to extend Kepler’s laws beyond the planets to other heavenly
bodies and even to artificial satellites, as Newton himself realized and explicitly mentioned.

These great discoveries are presented in Chapters 15 and 16. Chapter 14 sets the stage with
a statement of Kepler’s laws and a discussion of some implications and equivalent forms of
the laws, expressed in rectangular and polar coordinates, and in vector forms. In particular, the
connection between Kepler’s second law and central forces makes a natural appearance here.
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Chapter 15 Newton’s Law of Universal Gravitation This chapter presents what is essen-
tially Newton’s original reasoning that Kepler’s three laws of planetary motion imply that the
gravitational force of the sun on its planets is a central, attractive, inverse square force and
that there is a gravitational constant for the solar system that is determined by the sun and is
independent of the planets. Newton observed that the moons of Jupiter satisfy Kepler’s laws
and, hence, that the gravitation force of Jupiter on its moons also is a central, attractive, inverse
square force. He used data about the Earth and its moon and Galileo’s measurements of the
gravitational acceleration near the surface of the Earth to confirm that Galileo’s measurements
and the inverse square law were consistent. Newton combined the experimental evidence with
his third law to deduce his now famous law of universal gravitation.

Chapter 16 From Newton To Kepler and Beyond This final chapter of the book closes the
circle of ideas explored in Chapters 14 and 15. Once again we follow Newton’s reasoning, recast
in modern notation. We derive Kepler’s laws of planetary motion from Newton’s law of universal
gravitation. The derivation explains Kepler’s original laws and extends their applicability to other
heavenly bodies and artificial satellites. Now trajectories of heavenly bodies are not restricted
to ellipses but can be any conic section. Which conic section depends on the velocity and
position of the body at any instant of time and can be expressed in terms of its total kinetic and
gravitational energy.
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L’Hôpital’s rule, 14, 54
via inverse functions, 27

Lagrange multipliers, 85, 89
Lambert, Johann, 107, 110
Law of Gravitation

for the solar system, 202
universal, 204

Leibniz, Gottfried Wilhelm, 31, 69, 107, 115,
125

Lindemann, Ferdinand von, 110



Index 227

Linear approximation, 43
Linear momentum, 221
Liouville, Joseph, 111
Logarithmic function

definition of, 36
derivative of, 36

Mass-spring system, 172, 179
Mathematical model, 115
Max-min problems

change of variables, 84
Lagrange multipliers, 85
via families of curves, 77

Max-min value theorem, 86
Mean distance, 189
Mechanical energy, 159
Method of successive approximation, 28
Moment of a force, 221
Monotone function

jump of, 21
one-sided limits of, 20, 26

Monotonic (monotone), 3
Monte Carlo methods, 129
Monte Carlo simulation, 135

Natural exponential function
definition of, 34
derivative of, 34

Natural logarithm, 34
definition of, 34
derivative of, 35

Newton’s law of cooling, 51
Newton’s Law of Universal Gravitation, 204

Jupiter, 204
Newton’s laws, 117
Newton’s method, 47

chaos and fractals, 59
convergence of, 48
error in, 52, 56
Fourier’s root trapping, 56
initial guess, 47, 55
iterates, 48
iteration formula, 48
Newton’s cubic, 49
quadratic convergence, 54

Newton, Isaac, 69, 106, 187, 199
Niven, Ivan, 107

Odd function, 73
One-to-one function, 19, 21
Optimal location, 141, 143, 146

finding the, 148
properties of, 147

successive approximations, 148
uniqueness of, 146
with weights, 150

Orbital energy, 217

Parametric curve
arc length of, 103
curvature, 102
regular, 103
smooth, 103

Pendulum, 174, 180, 182, 183
period, 175

perihelion, 199
Phase angle, 172
π is irrational, 107
π 2 is irrational, 112
Polar coordinates

acceleration in, 201
velocity in, 201

Potential energy, 159
gravitational, 218
of a spring, 174

Power function, 36
Probability, 129

event, 129
independent events, 130
mutually exclusive events, 129
sample space, 131

Ptolemy, Claudius, 107

Quadratic convergence, 54

Radius of curvature, 105
Root of a function, 47

double, 47
simple, 47
triple, 47

Root-finding
bisection method, 29
Halley’s method, 58
Newton’s method, 48

Simple harmonic motion, 172
amplitude, 172
damped, 181
phase angle, 172

Simple pendulum, 174, 175, 180, 182, 183
period, 175

Sinc function, 12
Spring constant, 172
Squeeze law, 35
Steiner problem, 152
Steiner, Jakob, 153



228 Index

Tangent line approximation, 43
and concavity, 44
error in, 44, 45, 54
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