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PREFACE 

By topological dynamics we mean the study of transformation groups with 
respect to those topological properties whose prototype occurred in classical 
dynamics. Thus the word "topological" in the phrase "topological dynamics" 
has reference to mathematical content and the word "dynamics" in the phrase 
has primär}' reference to historical origin. 

Topological dynamics owes its origin to the classic work of Henri Poincaro 
and G. D. Birkhoff. I t was Poincaro who first formulated and solved problems 
of dynamics as problems in topology. Birkhoff contributed fundamental concepts 
to topological dynamics and was the first to undertake its systematic develop-
ment. 

In the classic sense, a dynamical System is a System of ordinary differential 
equations with at least sufEcient conditions imposed to insure continuity and 
uniqueness of the Solutions. As such, a dynamical System defines a (one-param-
eter or continuous) flow in a space. Á large body of results for flows which are 
of interest for classical dynamics has been developed, since the time of Poincaro, 
without reference to the fact that the flows arise from differential equations. 
The extension of these results from flows to transformation groups has been the 
work of recent years. These extensions and the concomitant developments are 
set forth in this book. 

Part One contains the general theory. Part Two contains notable examples 
of flows which have contributed to the general theory of topological dynamics 
and which in turn have been illuminated by the general theory of topological 
dynamics. 

In addition to the present Colloquium volume, the only books which contain 
extensive related developments are G. D. Birkhoff [2, Chapter 7], Niemytzki 
and Stepanoff [1, Chapter 4 of the Ist edition, Chapter 5 of the 2nd edition] 
and G. T. Whyburn [1, Chapter 12]. The contents of this volume meet but 
do not significantly overlap a forthcoming book by Montgomery and Zippin. 

The authors wish to express their appreciation to the American Mathematical 
Society for the opportunity to publish this work. They also extend thanks to 
Yale University and the Institute for Advanced Study for financial aid in the 
preparation of the manuscript. The second named author extends to the Ameri
can Mathematical Society his thanks for the invitation to give the Colloquium 
Lectures in which some aspects of the subject were discussed. Some of his work 
has been supported by the United States Air Force through the Office of Scientific 
Research of the Air Research and Development Command. 

PHILADELPHIA, PENNSYLVANIA 

N E W HAVEN, CONNECTICUT 

July, 1954 
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CONVENTIONS AND NOTATIONS 

Each of the two parts of the book is divided into sections and each section 
into paragraphs. Cross references are to paragraphs. 4.6 is the sixth paragraph 
of section 4. In general, a paragraph is either a definition, lemma, theorem or 
remark. Á "remark" is a statement, the proof of which is left to the reader. 
These proofs are not always trivial, however. 

References to the literature are, in general, given in the last paragraph of 
each section. Numbers in brackets following an author's name refer to the 
bibliography at the end of the book. Where there is Joint authorship, the number 
given refers to the article or book as listed under the first named author. 

An elementary knowledge of set theory, topology, uniform Spaces and top-
ological groups is assumed. Such can be gained by reading the appropriate 
sections of Bourbaki [1, 2, 3]. With a few exceptions to be noted, the notations 
used are Standard and a separate listing seemed unnecessary. 

Unless the contrary is specifically indicated, groups are taken to be multipli-
cative. Topological groups are not assumed to be necessarily separated (Haus-
dorff). The additive group of integers will be denoted by 0 and the additive 
group of reals by (ft. 

Contrary to customary usage, the function or transformation sign is usually 
placed on the right. That is, if X and Õ are sets, / denotes a transformation 
of X into Õ and ÷ £ X, then xf denotes the unique element of Õ determined 
by ÷ and / . 

In connection with uniform Spaces, the term index is used to denote an ele
ment of the filter defining the uniform structure, thus replacing the term 
entourage as used by Bourbaki [2]. In keeping with the notation for the value 
of a function, if X is a uniform space, á is an index of X and ÷ £ X, then xa 
denotes the set of all y £ X such that (x} y) £ a. Unless the contrary is stated, 
a uniform space is not necessarily separated. 

vn 
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APPENDIX2 

MINIMAL SETS: AN INTRODUCTION TO 
TOPOLOGICAL DYNAMICS1 

W. H. GOTTSCHALK 

The notion of minimal set is centrally located in topological dy
namics. Topological dynamics may be defined as the study of trans-
formation groups with respect to those properties, wholly or largely 
topological in nature, whose prototype occurred in classical dynamics. 

Henri Poincare was the first to introduce topological notions and 
methods in dynamics, that is, the study of ordinary differential equa-
tions. G. D. Birkhoff was the first to undertake the systematic de-
velopment of topological dynamics, indicating its essentially abstract 
character and making fundamental contributions. BirkhofTs first 
paper on the subject appeared in 1912 [6, pp. 654-672]; BirkhofTs 
paper contains the first definition of minimal sets, some theorems 
about them, and some examples of them. Most of BirkhofTs work 
in topological dynamics from the point of view of general theory is 
to be found in Chapter 7 of his Colloquium volume Dynamical Sys
tems published in 1927 [5]. The Colloquium volume Analytical 
topology by G. T. Whyburn [27], published in 1942, contains related 
developments in its Chapter 12. The Russian book, Qualitative theory 
of differential equations by Nemyckii and Stepanov [22], first edition 
in 1947 and second edition in 1949, contains a chapter devoted to 
topological dynamics; an English translation of this book has recently 
been announced by Princeton Press. The treatments of topological 
dynamics in the above books are all from the points of view of a single 
transformation or a one-parameter group of transformations. The 
Colloquium volume Topological dynamics by Hedlund and myself 
[ l4] , published in 1955, is concerned mainly with general trans
formation groups. 

Á topological transformation group, or transformation group for short, 
is defined to be an ordered triple (× , Ã, ð) such that the following 
axioms are satisfied: 

(AO) (STIPULATIVE AXIOM). X is a topological space, called the 
phase Space; Ô is a topological group, called the phase group; and ð is a 
map of the cartesian product XXT into X, called the phase map. 

An address delivered before the Washington meeting of the Society on October 
26, 1957, by invitation of the Committee to Select Hour Speakers for Eastern Sec-
tional Meetings; received by the editors April 10, 1958. 

1 This address was prepared while the author was under contract No. AF 18(600)-
1116 of the Air Force Office of Scientific Research. Reproduction in whole or in part 
is permitted for any purpoee of the United States Government. 

Reprinted from the Bulletin of the American Mathematical Society, Vol. 64, 
No. 6, November, 1958, pp. 336-351. 
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144 APPENDIX 

[Let us for the moment use the multiplicative notation for the phase 
group Ã, let e denote the identity dement of Ã, and let the value of 
ô at the point (x, t) of X X Ô be denoted by xt. ] 

(Al) (IDENTITY AXIOM). xe = x for all * E X . 

(A2) (HOMOMORPHISM AXIOM). (xt)s = x(ts) for all * £ X and all 

(A3) (CONTINUITY AXIOM). ð is continuous. 

Consider a given transformation group (×, Ô, ô). The phase map 
(x, /) —*xt determines two kinds of maps when one of the variables 
x, t is replaced by a constant. Thus, for fixed / £ Ã, the map x-^xt is 
a homeomorphism ð* of the phase space X onto itself which is called 
a transition. Again, for fixed x £ X , the map t—*xt is a continuous map 
ð÷ of the phase group Ô into the phase space X which is called a 
motion. The set of all transitions is a group of homeomorphisms of 
the phase Space X onto itself such that the transition 7re induced by 
the identity element e of Ô is the identity homeomorphism of the 
phase space X and such that the map /—»ð* is a group homomorphism. 
Conversely, a group of homeomorphisms of X onto itself, suitably 
topologized, gives rise to a transformation group. 

An intrinsic property of the transformation group (×, Ô, ð) is 
defined to be a property which is describable in terms of the topology 
of the phase space X, the topology and group structure of the phase 
group Ã, and the phase map ô. Topological dynamics is concerned 
with intrinsic properties of transformation groups with particular 
reference to those properties which first arose in classical dynamics. 

Among the examples which have been studied in the past, the most 
frequently occurring phase groups are the additive group ü of integers 
with the discrete topology and the additive group (R of real numbers 
with its usual topology. In either case, the transformation group is 
called aflow. If the phase group Ô is d, then the transformation group 
is called a discrete flow. If the phase group Ô is (ft, then the trans
formation group is called a continuous flow. Here the word "continu
ous" apparently refers to the "real number continuum". 

To see how transformation groups in the role of continuous flows 
appeared in classical dynamics, consider a System of ç first order 
ordinary differential equations of the form 

dxi 
— = /»•(*!> · · • ! * » ) (i = 1» ' ' ' > n) 

dt 
where the functions /< may be defined on a region X of euclidean n-
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space or they may be defined locally throughout an w-dimensional 
differentiable manifold X. Impose enough conditions to insure the 
existence, uniqueness, and continuity of solutions for all real values 
of the "time" / and through all points of X. Then there exists exactly 
one continuous flow in X whose motions are the solutions of the Sys
tem of differential equations. To illustrate with a very simple exam-
ple, the continuous flow in the plane determined by the System 

dxi dx2 
— = ×é, — = - X2 
dt di 

has as phase map ð((#é, Ä:2), /) = (#i e\ X2e~t). 
Á dynamical System may be defined as a continuous flow in a 

differentiable manifold induced by an autonomous System of first 
order ordinary differential equations, as above. Of course, every 
dynamical System is a continuous flow. To what extent and under 
what conditions a continuous flow is a dynamical System appears to 
be a largely unsolved problem. Let me say that this usage of the term 
"dynamical System" is not at all universal. More likely than not it is 
often used as synonymous with "continuous flow" or even "discrete 
flow." 

The two kinds of flows, discrete and continuous, are closely related. 
For example, a continuous flow determines many discrete flows by 
taking cyclic subgroups of (R. Conversely, a discrete flow determines 
a continuous flow when the phase space X is extended to the car-
tesian product of X and the closed unit interval, and the bases of the 
cylinder thus obtained are identified according to the transition in
duced by the integer 1, that is, (x, 1) and (xl, 0) are identified. The 
problem of imbedding a discrete flow in a continuous flow without 
alteration of the phase Space appears to be largely unsolved. 

Á discrete flow determines and is determined by the transition in
duced by the integer 1. Thus, we may redefine a discrete flow more 
economically as an ordered pair (×, ö) where X is a topological space 
and ö is a homeomorphism of X onto X, For the sake of simplicity, 
I wish to confine most of my remaining remarks to flows, and in par-
ticular to discrete flows. Moreover, the phase space will be assumed 
to be compact metric for the same reason. It is to be pointed out 
that the present theory of topological dynamics contains results on 
transformation groups acting upon topological Spaces and uniform 
spaces which specialize to give most of the known facts about flows 
on metric spaces. 

Let X be a nonvacuous compact metric space with metric ñ and 
let ö be a homeomorphism of X onto X. 
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The phase Space X is nonvacuous closed and invariant, that is, 
×ö = ×. In case X has these properties minimally it is said that X is a 
minimal set. The definition may be phrased for a subset of ×. Á 
subset Ì  of X is said to be minimal under ö provided that Ì  is 
nonvacuous closed and invariant, that is Ì ö = Ì , and no proper 
subset of Ì  has all these properties. Minimal sets may be character-
ized in various ways. If x g Z , then the orbit of x, denoted Ö(x), is 
defined to be {÷ö ç | ç£# } where ü is the set of all integers; and the 
orbit-closure of x, denoted 0(x)t is defined to be the closure of the 
orbit 0(x) of ÷. Á subset Ì  of X is minimal if and only if Ì  is non
vacuous and Ì  is the orbit-closure of each of its points. 

By the axiom of choice, there always exists at least one minimal 
subset of Æ [14, ñ. 15]. 

Now recursive properties enter into consideration. Á point ÷ of the 
phase Space is said to be almost periodic under ö and ö is said to be 
almost periodic at ÷ provided that if U is a neighborhood of x, then 
there exists a relatively dense subset Á of ö such that ÷öçîæÉÉ for 
all wGA. Á subset Á of $ is called relatively dense in case the gaps 
of Á are bounded. Another way of saying the same thing is that 
4=A+K= {a+k\a£A&k&K} for some finite subset Ê of tf. We 
may call the set Ê a bond of the set Á. Á periodic point is almost 
periodic, but not conversely. It has been remarked that a periodic 
point returns to itself every hour on the hour; but an almost periodic 
point returns to a neighborhood every hour within the hour. 

The basic connection between minimal sets and almost periodic 
points is this: The orbit-closure of a point ÷ is minimal if and only if 
the point ÷ is almost periodic [14, p. 31 ]. Consequently, every point 
of a minimal set is almost periodic, and there always exists at least 
one almost periodic point. This, of course, is in strong contrast to the 
Situation with respect to periodic points. 

Since different minimal subsets of X are necessarily disjoint, we 
may conclude that the dass of all orbit-closures is a partition of the 
phase space if and only if ö is pointwise almost periodic, that is to 
say, ö is almost periodic at each point of X. The partition of orbit-
closures, when it exists, is necessarily star-open in the sense that the 
Saturation or star of every open set is again open. In a compact metric 
space, which we are here considering, this is equivalent to lower semi-
continuity in another terminology. It is however not always the case 
that the partition of orbit-closures is star-closed in the sense that the 
star of every closed set is itself closed, or equivalently, upper semi-
continuous. This condition may be characterized by the following 
recursive property. The map ö is said to be weakly almost periodic on 



TOPOLOGICAL· DYNAMICS 147 

X and the phase space X is said to be be weakly almost periodic under 
ö provided that if e is a positive real number, then there exists a 
finite subset K€ of ý such that x £ X implies the existence of a (neces-
sarily relatively dense) subset Ax of £ such that 6—Az-\-Kt and 
÷öçÅ:Í €(÷) for all n£iAx. Here the bond Ke depends only upon €, 
but the individual sets of return Ax depend also upon x. To summa-
rize, the dass of all orbit-closures is a star-closed partition of the phase 
space if and only if the map ö is weakly almost periodic [14, p. 34]. 
In particular, ö is weakly almost periodic on each minimal set. 

We are now in the middle of the spectrum of recursive properties. 
Á weaker recursive property than almost periodic may be mentioned 
first of all. Á point ÷ of the phase space is said to be recurrent provided 
that if U is a neighborhood of x, then there exists an extensive subset 
Á of 4 such that # ö ç £ ß/ for all çæ_Á. Here "extensive" means con-
taining a sequence diverging to — <x> and a sequence diverging to 
+ 00. In other words a point is recurrent provided that it returns 
(or recurs) to a neighborhood infinitely often in the past and infinitely 
often in the future. The term recurrent as it is here used coincides 
with its meaning in the Poincare Recurrence Theorem (1899), which 
seems to be one of the earliest appearances in the literature of a 
theorem on a recursive property different from periodic. In general, 
pointwise recurrent does not imply pointwise almost periodic [12]. 
However, if the phase space is also zero-dimensional, then pointwise 
recurrent implies weakly almost periodic [14, p. 65]. 

Corresponding to any recursive property there is also the property 
of regionally recursive. For example, ö is regionally recurrent provided 
that if # £ X and if U is a neighborhood of #, then there exists an ex
tensive subset Á of d such that ¼Ã\íö çô^0 for every çææÁ. The 
center of a discrete flow {×, ö) is defined to the greatest invariant 
subset on which ö is regionally recurrent. The center is also character-
ized as the closure of the set of recurrent points. Since every almost 
periodic point is also recurrent, the center is necessarily nonvacuous. 
The center has the property that the relative sojourn of every point 
of the phase space in a neighborhood of the center is equal to unity. 
If the flow has an invariant measure which is positive and finite for 
nonvacuous open sets, then the flow is regionally recurrent and the 
center is the entire phase space. This is the case for conservative dy-
namical Systems [14; 22]. 

Let us examine a few stronger recursive properties. The map ö is 
said to be almost periodic on X and the phase space X is said to be 
almost periodic under ö provided that if e>0 , then there exists a 
relatively dense subset Á of ý such that ÷öçîæÍé(÷) for all x^X and 
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all çææÁ. Almost periodic implies weakly almost periodic which in 
turn implies pointwise almost periodic; no converse holds. The almost 
periodicity of the map ö may be characterized as follows. These four 
Statements are pairwise equivalent: (1) ö is almost periodic; (2) the 
set of powers of ö , namely [öç\ n £ # }, is equicontinuous; (3) the set 
of powers of ö has compact closure where the ambient space is the 
group of all homeomorphisms of X onto X with the usual topology; 
(4) there exists a compatible metric of X which makes ö an isometry 
[14, p. 37]. 

Á still stronger recursive property is regularly almost periodic 
(G. T. Whyburn 1942; P. A. Smith 1941 related) [27; 24]. This is 
like almost periodic except that the set of return Á is taken to be a 
nontrivial subgroup of 0. We have then the properties: regularly al
most periodic point, pointwise regularly almost periodic map, and 
regularly almost periodic map. We mention a few results in this con-
text. The map ö is regularly almost periodic if and only if ö is both 
pointwise regularly almost periodic and weakly almost periodic. If 
ö is pointwise regularly almost periodic, then every orbit-closure is a 
zero-dimensional regularly almost periodic minimal set [14, p. 49f.]. 
That a regularly almost periodic homeomorphism on a manifold is 
necessarily periodic has been conjectured by Ñ. Á. Smith (1941) 
[24], but so far has been proved only for the two-dimensional case 
[for example, 14, p. 56]. 

By definition, an inheritance theorem is a theorem of the form 
"ö has property Ñ if and only if ö ð has the property P" where ç is a 
preassigned nonzero integer. The inheritance theorem holds for re-
current and almost periodic points as well as for certain other recur
sive properties of a point. Actually, a very general inheritance theo
rem can be proved which yields most known results for recursive 
points [l4, p. 26]. No general inheritance theorem is known for such 
properties as regionally recurrent and weakly almost periodic al-
though they too inherit, at least under certain conditions [14, pp. 67 
and 35]. 

In this connection we may mention the fact that a connected mini
mal set under ö is also minimal under öË (ç?^0) [14, p. 16]. 

Two discrete flows (×, ö) and (7 , ø)  are said to be isomorphic pro-
vided there exists a homeomorphism h of X onto Õ such that ö\é = hp. 

Let us consider now the problems: (1) (Construction problem.) To 
construct all minimal sets systematically; (2) (Classification prob
lem.) To classify all minimal sets according to isomorphism type. At 
the present, only partial answers can be given to these questions, 
even for discrete flows on compact metric Spaces. 
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In the spectrum of isomorphism types of minimal sets, those which 
are almost periodic seem to constitute an extreme case, for the fol-
lowing reason. Á monothetic group is by definition a compact group 
which contains a dense cyclic subgroup, a generator of a dense cyclic 
subgroup being called a generator of the monothetic group. Now the 
almost periodic minimal sets under discrete flows are coextensive 
with the monothetic groups in the following sense. If X is a mono
thetic group with generator á, then X is a minimal set under the 
homeomorphism ö of X onto X defined by x—>xa. Conversely, if 
(× , ö) is an almost periodic minimal set, then there exists a group 
structure in X which makes X a monothetic group and such that the 
map ö is translation by a generator á, that is ÷ö — ÷á for all ÷æ,× 
[14, p. 39]. Since the monothetic groups can be constructed in their 
entirety as the character groups of the subgroups of the discrete 
circle group (Anzai and Kakutani 1943) [2], the construction problem 
for almost periodic minimal sets under discrete flows has a reasonably 
definite answer. It is not clear to me whether the corresponding 
Classification problem can also be answered by the present theory of 
topological groups. It is known (Halmos and Samelson 1942; Anzai 
and Kakutani 1943) [15; 2] that every compact connected separable 
abelian group is monothetic. For example, the n-toral groups Kn 

where ç is a positive integer and the infinite toral group K? are 
monothetic. 

The w-adic groups are monothetic and are topologically the Cantor 
discontinuum. Let us describe geometrically a minimal set given by 
the dyadic group and a generator. Á similar construction is available 
for the general case. 

If Å is the disjoint union of segments (meaning closed line Seg
ments) £1, · · · , Er, let JS* denote the union of segments obtained 
bydeleting the open middle third of each of the segments £1, · · · , ET. 
Let S be a segment of length 1. Define Xo, ×é, ' ' ' inductively as 
follows: XQ = S, ×ç+1=×Ú (w = 0, 1, 2, · · · ). Define X = fl+JJ * „ . 
The space X is the Cantor discontinuum. Denote the 2n disjoint 
segments which make up I „ (rc = 0, 1, 2, · · · ) by S(n, m) (O^w 
g 2 n - l ) where 5(0, 0 ) = S , 5(w + l, m) is the initial third of S(n, w), 
and S(?z + 1, m + 2n_1) is the terminal third of 5(w, m). For each non
negative integer ç permute the segments S(n, m) ( 0 g m g 2 n " 1 ) 
cyclicly according to the second coordinate m. These permutations 
induce a homeomorphism ö of X onto itself. More exactly, if ÷î.×, 
then for each nonnegative integer ç we have that x £ 5 ( n , ran) for 
exactly one integer mn with 0 ^ m n ^ 2 n —1 and ÷ö = Ã\×"0 S(n, wn + l 
(mod 2n)). It follows that (X} ö) is a regularly almost periodic mini-
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mal set which we may call the dyadic minimal set. To see the group 
structure of X, draw the horizontal segments 5(1, 0) and 5(1, 1) 
under the horizontal segment 5(0, 0), draw downward arrows to 
5(1, 0) and 5(1, 1) from 5(0, 0), and label the arrows 0 and 1 from 
left to right. Continue this process. Á point of X is uniquely repre-
sented by a downward chain of arrows and therefore by a sequence 
of O's and l's. The sequences are added coordinatewise with (pos-
sibly infinite) carry-over. The generator of the dyadic group X which 
corresponds to ö is given by the sequence (1, 0, 0, 0, · · · ). The n-adlc 
minimal sets are all regularly almost periodic. 

In the case of the circle (1-sphere) as a minimal set under a discrete 
flow, the isomorphism type is characterized by an irrational number 
r between 0 and 1, the Poincare rotation number, and the minimal 
set is isomorphic to the spin of a circle through an angle which isr7r 
[for example, 17]. Actually, the discrete flows on a circle appear to be 
presently unclassified. Let us look at one. Let · · · , E_i, E0, Ei, · · · 
be a disjoint bisequence of closed arcs on a circle Ê such that Une# E n 

is dense in Ê and such that the cyclic Order of · · · , E_i, E0, Ei, · · · 
on Ê agrees with the cyclic order of · · · , xr~l, x, xr, • · · on a circle 
when the circle is rotated through one radian, ÷ being a point of the 
circle and r denoting the rotation. Map En (nE#) homeomorphically 
onto En+i in the evident manner. This defines a homeomorphism of 
Unecj En onto itself. Since both this homomorphism and its inverse 
are uniformly continuous, it can be extended uniquely to a homeo
morphism ö of Ê onto K. The complement of Une# int En is a mini
mal set under ö which is the Cantor discontinuum and which is not 
almost periodic. The endpoints of the En (w(~£f) constitute a pair of 
doubly asymptotic orbits, that is ñ(÷öç, ãöç) goes to zero with 1/n 
where ÷ and y are the endpoints of the are E0. 

The almost periodic minimal sets are homogeneous since their 
phase spaces are groups. Is every minimal set homogeneous? The 
answer is no (Floyd 1949) [ l l ] . Floyd's example may be described 
in geometric language (University of Pennsylvania dissertation of 
Joseph Auslander 1957) [3]. 

If Å is a box Á XB where Á and Â are segments, define E* to be 
(A1XBi)\J(AzXB)KJ(AbXB2) where Au · · · , As are the consecu-
tive equal fifths of Á and Bu B2 are the consecutive equal halves of 
B. If D is a disjoint union of boxes, define D* to be the union of the 
E* where Å ranges over the boxes in D. Start with the unit box Xo 
and define 

Xn+l = X* {n = 0 ,1 , 2, - - · ), X = Ð Xn. 
n=0 
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The boxesin Xn (n = 0 ,1 , 2, • · · ) are permuted just like the Segments 
are permuted in the construction of the triadic minimal set. For exam-
ple, the first three stages have boxes numbered as follows from left to 
right: 0; 0, 1, 2: 0, 3, 6, 1, 4, 7, 3, 5, 8. The process gives rise to a 
homeomorphism ö oi X onto X. It is seen that X consists of point-
components and segments, X is zero-dimensional at point-compo-
nents, X is one-dimensional on segments, X is therefore not homo-
geneous, X is minimal under ö, ö is not almost periodic, ö is regularly 
almost periodic at some points of X but not at all points, ö is not 
recurrent and no orbits are unilaterally asymptotic. 

There is also an example (F. B. Jones 1949) [14, p. 139 f.] of a 
minimal set under a discrete flow whose phase space is a plane one-
dimensional continuum which is locally connected at some points 
and not locally connected at other points. 

We turn now to another dass of examples which we shall call 
shißing flows. Consider a nonvacuous compact metric space Å and 
form its cartesian power × = ̧ ?  with exponent 0 where ü is the set of 
all integers. An element of X is simply a function on $ to E. Provide 
X with its product topology, or equivalently, its point-open topology. 
Define a homeomorphism ó of X onto X as follows: (÷ç\çæ:0)ó 
= (xn+\\ w£#) where x = (jcn| n £ £ ) £ X . The map ó is cutomarily 
called the shift transformation. Á point ÷ of X may be denoted by a 
so-called symbolic trajectory. 

é 
• · · X-i XQXI · · · 

with index (the arrow) which denotes the value of the point ÷ at 0. 
The shift transformation changes the indexed symbolic trajectory 
simply by shifting the index to the next symbol on the right. Thus 

÷ ÷ó 

i i 
' · · X-2 X-l XQ X\ X2 * * · 

The notational device of a symbolic trajectory helps very consider-
ably in the study of shifting flows. 

Á symbolic flow is defined to be.a shifting flow (E^, ó) where Å is a 
finite set with more than one element. The phase space E^ of a sym
bolic flow (£ , ó) is the Cantor discontinuum. Symbolic dynamics is 
defined to be the study of symbolic flows; it is therefore largely com-
binatorial in nature. Á large number of papers have been concerned 
with symbolic dynamics [14, p. 113]. The symbolic flows are descrip-
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tive of geodesic flows over certain surfaces of constant negative curva-
ture. Marston Morse (1921) [20] defined a symbolic trajectory as 
follows, where E= {á, b} with a?*b. The elements á and b are called 
duals of each other. Consider the 1-block á; dualize to form the 
1-block b and suffix it; we now have a 2-block ab. Consider the 2-
block á b; dualize to form the 2-block 6 á and suffix it; we now have 
a 4-block ab b a. The next step gives the 8-block ab b ab á ab. The 
process is continued to form a ray. This ray is then reflected to the 
left to form a trajectory which may be indexed at any symbof. This 
indexed trajectory is an example of an almost periodic point under ó 
which is not periodic. Consequently, Morse showed for the first time 
that there exist everywhere nonlocally connected compact minimal 
sets under certain geodesic flows. 

Á characteristic property of symbolic flows is expansive. Á discrete 
flow (×, ö) is said to be expansive provided there exists a positive 
real number e such that if ÷ and y are different points of the phase 
Space X, then ñ{÷öç, ãöç)>€ for some integer n. I t may be seen that 
every symbolic flow is expansive and, conversely, if a discrete flow 
on a zero-dimensional compact metric space is expansive, then it 
may be imbedded in a symbolic flow. Observe that expansive is a 
strong negation of isometric, or equivalently, almost periodic. Con
sequently, the expansive minimal sets appear to be at the other end 
of the spectrum from almost periodic minimal sets. It has been 
proved (Schwartzmann 1952; Utz 1950 related) [23; 26; 14, p. 87] 
that every expansive discrete flow possesses a pair of points which is 
positively asymptotic and a pair of points which is negatively asymp-
totic. This means that xj^y and ñ(÷öç, ãöç)-+0 as ç—»+oo or 
n—>— oo, respectively. The asymptotic points of a minimal set are at 
least partially characteristic of the minimal set. 

In the shifting flow (Å?, ó) we may take Å to be the closed unit 
interval / and obtain the Hubert cube J^ as phase space. We may 
also take Å to be the circle group Ê and obtain the infinite toral group 
K^ as phase space; in this case the shift transformation is a group 
automorphism. An example (R. F. Williams 1955) [28] of an expan
sive discrete flow on a continuum may be imbedded in the flow 
(K^y ó) . It is described as the set of all bisequences (zn/n&) such 
that zn=zl+l for all fl£4; it is therefore the 2-solenoidal group and 
the map is a group automorphism. The shifting flows in the Hubert 
cube, the infinite torus, and other Spaces, appear to be worthy of 
further study. So far as I am aware, shifting flows have been sys-
tematically investigated only in the case of symbolic flows. 

I wish now to describe briefly some recent unpublished work [3, 
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related] tending toward the Classification of locally almost periodic 
minimal sets. Given a discrete flow (×, ö). The map ö is said to be 
locally almost periodic provided that if J C £ I and if U is a neighbor-
hood of x, then there exists a neighborhood V of ÷ and a relatively 
dense subset Á of d such that íö ç(Æõ for all ç £-4. Two points ÷ 
and y of X are said to be proximal provided that if c>0 , then 
ñ(÷öç, ãöç) <e for some w£0 . Assume now that X is compact metric 
and ö is locally almost periodic. The relation proximal is a closed 
equivalence relation in X. Consider now the star-closed partition 
space X* determined by the relation proximal. The discrete flow in-
duced on X* is almost periodic. Suppose also that -X" is minimal. Then 
X* is minimal. Hence X* is an almost periodic minimal set and thus 
a monothetic group, called the structure group of the original locally 
almost periodic minimal set. To illustrate, the structure group of 
Floyd's example is the triadic group, and the structure group of 
Jones' example in the circle group. 

Just a few words now about continuous flows. In general, the 
definitions and theorems mentioned before apply to continuous flows 
as well as discrete flows. There are some exceptions, however. Á 
minimal set under a continuous flow is necessarily connected; not 
so for a discrete flow. Another exception appears in the theorem 
(A. A. Markov 1931) [19; 14, p. 14] that a finite-dimensional minimal 
set under a continuous flow is a Cantor-manifold and hence has the 
same dimension at each point. This is not true for discrete flows: 
witness the example of Floyd. 

The examples of continuous flows which have been most exten-
sively studied are the geodesic flows over surfaces of constant nega
tive curvature. Geodesic flows are defined for Riemannian manifolds 
of arbitrary dimension but let us think of the 2-dimensional case. 
Let S be a surface of dass C2 provided with a Riemannian metric of 
dass C2 and which is complete in the sense that each geodesic are in 
S can be extended to infinite length in both directions. The phase 
Space X consists of the unit contravariant vectors on S which we 
may call the unitangents (unitangent = unit tangent). Let ÷îæ× and 
let /£(R. Consider the geodesic g in 5 which has ÷ as a tangent. If t 
is positive, measure t units of are length along g in the same direction 
as ÷ from the base point of ÷ and take the unitangent to g at the new 
point to be the image of ÷ under the transition ôÊ Likewise for nega
tive t. There results a continuous flow which is called the geodesic 
flow over S. Now X is a 3-dimensional manifold which is the bündle 
Space of a fibre bündle with the circle as fiber and the surface S as 
base Space. The geodesic flows are dynamical Systems which are 
determined by the Euler equations. 
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We State one theorem on geodesic flows which is now classical. If 
5 is a complete 2-dimensional analytic Riemannian manifold of con-
stant negative curvature and of finite area, then the geodesic flow 
over S is regionally mixing and its periodic points are dense in the 
space of unitangents on 5. This theorem is proved again in the Col-
loquium volume Topological dynamics [14, p. 131 ]. Á continuous 
flow (Xy (R, ð) is said to be regionally mixing provided that if U and 
V are nonvacuous open subsets of X, then there exists a positive real 
number s such that OtC\V^0 for /£(R with \t\^s. 

Closely related to the geodesic flows are the horocycle flows over 
surfaces of constant negative curvature. They have the same phase 
Spaces as geodesic flows but different transitions and motions. I t has 
been shown (Hedlund 1936) [lo] that for each integer p>l there 
exists a closed orientable surface S of constant negative curvature 
and of genus p such that the space X of unitangents on S is a region
ally mixing minimal set under the horocycle flow over S. Here the 
phase Spaces X are compact 3-dimensionaI manifolds, are not almost 
periodic under the horocycle flows, and, even more, are not recurrent 
(since regionally mixing). Á continuous flow (X, (R, ð) is said to be 
recurrent provided that if €>0, then there exists an extensive subset 
Á of (R such that **£#«(*) for all x£X and all t£A. 

As remarked previously, every discrete flow (× , ö) gives rise to a 
continuous flow as follows: take the cartesian product of X and the 
closed unit interval, and identify bases according to the map ö. The 
capped w-adic minimal sets produce the rc-solenoidal minimal sets. 
All of these minimal sets are regularly almost periodic, and their 
structure groups are the w-adic groups and the w-solenoidal groups. 

Consider the space X of all continuous functions/on the line group 
R to (R and provide X with its compact-open topology. Define a con
tinuous flow in X by translation of the function / : ( / (r) | r£(R) 
- * ( / ( r + / ) | r £ ö O defines ð1 for each /£(R. It is known (Bebutov 
1940) [4] that every continuous flow in a compact metric space with 
at most one fixed point is imbeddable in the above flow. The minimal 
sets under continuous flows therefore all appear in the Bebutov exam-
ple. Á perspicuous proof of his theorem is much to be desired. From a 
topological point of view, the Bebutov example has a favorable prop-
erty, namely, the orbit-closure of a point / is compact if and only if 
/ is bounded and uniformly continuous. 

The consideration of function Spaces leads us to the almost periodic 
functions of Harold Bohr. Consider the space X of all bounded uni
formly continuous functions on (R to (R and provide X with its uni
form topology. Define a continuous flow in X by translation of the 
functions. An element of X is an almost periodic function in the sense 
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of Bohr if and only if it is an almost periodic point under the flow. 
This Statement shows the consistency of the terminology almost peri
odic. Á certain fraction of the theory of almost periodic functions 
can be presented under the theory of continuous flows or, more gen-
erally, transformation groups, [14, pp. 40-48]. It seems that future 
developments will encompass more. Recent work of Tornehave 
(1954) [25] is suggestive in this connection. 

In the foregoing discussion of flows there are several features which 
suggest a broader and more general development in the context of 
transformation groups. Some of these features are: (1) analogous 
theories for discrete flows and continuous flows (the famous dictum 
of E. H. Moore is brought to mind); (2) the study of flows themselves 
leads to topological groups; (3) the study of flows leads to almost 
periodic functions and the theory of almost periodic functions in-
cludes functions on groups. 

The Colloquium volume Topological dynamics [14] is written from 
this more general point of view. Let us mention briefly two repre-
sentative notions of recursion for transformation groups. Let (X, T) 
be a transformation group. Á subset Á of the phase group Ô is said 
to be syndetic provided that T = AK for some compact subset Ê of T. 
The notion syndetic replaces the notion relatively dense for sets in 
$ and (R. Á point ÷ of the phase space X is said to be almost periodic 
provided that if U is a neighborhood of x, then xA = {xt\ t(EA } C U 
for some syndetic subset Á of Ô. Á semigroup Ñ in Ã is said to be 
replete provided that Ñ contains some bilateral translate of each com
pact subset of Ô. Á subset Á of Ô is said to be extensive provided that 
Á intersects every replete semigroup in Ã. Á point ÷ of X is said to 
be recurrent provided that if U is a neighborhood of x, then xA C U 
for some extensive subset Á of T. When Ô is # or (R, then these no
tions of recursion reduce to the customary ones for flows [14]. 

For the reamining moments permit me to pose a few more questions 
which are presently unanswered so far as I know. Questions stated 
for flows on metric Spaces are usually meaningful also for trans
formation groups on more general Spaces. 

(1) What compact metric Spaces can be minimal sets under a dis
crete flow? Under a continuous flow? The universal curve of Sier-
pinski? The universal curve of Menger? Á lens space? What poly-
hedra? Can they be nonorientable? About all that is known for poly-
hedra is that, in the continuous flow case, the Euler characteristic 
has to vanish. This follows from the fact that a minimal set with more 
than one point cannot have the fixed point property [l, p. 532]. The 
only closed surfaces with vanishing Euler characteristic are the torus 
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and the Klein bottle. The torus is a minimal set under both discrete 
flows and continuous flows. Can the Klein bottle be a minimal set ? 
What can be said about the homology and homotopy groups of a 
minimal set? 

(2) More generally, what subsets of a given phase space can be 
minimal subsets? Does there exist a discrete flow in euclidean 3-space 
such that some orbit-closure is the necklace of Antoine? If so, can 
it be minimal? In an «-dimensional manifold it is known that a mini
mal subset is either the whole manifold or of dimension less than ç 
[14, p. 14]. If the dimension is equal to w — 1 , then is it necessarily 
an (w —l)-torus? (Question of R. W. Bass.) Bass has pointed out 
that a theorem of Kodaira and Abe (1940) [18] shows the answer to 
be affirmative for an almost periodic minimal set under a continuous 
flow even when merely the phase space is imbeddable in euclidean 
«-space. 

(3) Let X be a compact uniform space which is minimal under a 
homeomorphism 0. In general, X need not be metrizable since every 
compact connected separable abelian group is monothetic (for exam-
ple, KJ where Ê is the circle group and J is the unit interval). What 
other conditions will guarantee that X be metrizable? One instance 
is that ö be expansive (Bryant 1955) [7; 9] . Another is that ö be 
regularly almost periodic. 

(4) Distal means without distinct proximal points. Is every distal 
minimal set necessarily almost periodic? It is known that distal and 
locally almost periodic are equivalent to almost periodic, even with
out minimality [13]. 

(5) The study of geodesic flows and horocycle flows now requires 
rather much geometry and analysis. Is it possible, in some sense, to 
axiomatize these flows so that they are more accessible to immediate 
study? 

(6) In many examples of geodesic flows, symbolic flows, and horo
cycle flows the following properties occur together: regionally mixing 
and dense periodic or almost periodic points. Does regionally mixing 
plus some auxiliary hypothesis imply that the almost periodic points 
are dense ? 

(7) What Spaces can carry an expansive homeomorphism (Ques
tion of Utz and others)? The n-cells? May such Spaces be locally 
connected ? 

(8) The roles of connected, locally connected, locally euclidean, 
and other kinds of Connectivity, in question of existence and im-
plication? 

(9) When von Neumann defined his almost periodic functions on a 



TOPOLOGICAL DYNAMICS 157 

group, he generalized Bochner's characterization of the Bohr almost 
periodic functions. This led to the notion of left and right almost peri
odic functions which Maak subsequently proved equivalent. (In-
cidentally, the theorems of topological dynamics can be quoted to 
establish this.) When the original Bohr definition is generalized di
rectly to functions on topological groups, a similar dichotomy öccurs 
but the answer as to their equivalence in this case is not clear. If the 
two kinds are actually equivalent, then this new definition leads again 
to von Neumann's functions. (See [14, p. 40 f.] for references and 
füll Statements.) 

(10) There are a number of theorems in topological dynamics 
whose hypothesis and conclusion are meaningful for nonmetric Spaces, 
say compact or locally compact uniform Spaces, and yet the only 
known proof makes use of a category argument valid for metric 
Spaces or a t least first-countable Spaces [14]. The question is to find 
a replacement for the category arguments, either in particular cases 
or in general, which permit the removal of countability assumptions 
such as metric or first-countable. Recent work of Robert Ellis (1957) 
[l0] is very interesting and suggestive in this connection. 

(11) From an abstract point of view, there is an equivalence be-
tween transformation groups and Spaces of functions on groups to 
Spaces. Briefly, the space X of functions on a group Ô to a Space Õ 
determines a transformation group (X, T) by translation on the func
tions; and a transformation group (× , Ã, ô) determines the Space 
{TTX |Ä:GX} of motions in the space Æ of all functions on Ô to X. 
These two constructions are not Symmetrie because the first produces 
a relatively complicated space X from a relatively simple space F, 
and the second produces a more complicated space Æ from an already 
complicated Space X. To avoid the difficulty, a theorem is needed for 
transformation groups which extends the Bebutov theorem on a 
universal flow for continuous flows. 

More questions are stated in [21 ]. 
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