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Preface

Interactions between the theory of partial differential equations of elliptic and
parabolic types and the theory of stochastic processes are beneficial for both prob-
ability theory and analysis. At the beginning, mostly analytic results were used
by probabilists. More recently, analysts (and physicists) took inspiration from the
probabilistic approach. Of course, the development of analysis in general and of
theory of partial differential equations in particular, was motivated to a great ex-
tent by problems in physics. A difference between physics and probability is that
the latter provides not only an intuition but also rigorous mathematical tools for
proving theorems.

The subject of this book is connections between linear and semilinear differ-
ential equations and the corresponding Markov processes called diffusions and su-
perdiffusions. A diffusion is a model of a random motion of a single particle. It is
characterized by a second order elliptic differential operator L. A special case is the
Brownian motion corresponding to the Laplacian A. A superdiffusion describes a
random evolution of a cloud of particles. It is closely related to equations involving
an operator Lu — ¥ (u). Here 9 belongs to a class of functions which contains,
in particular, ¥(u) = u® with @ > 1. Fundamental contributions to the analytic
theory of equations

(0.1) Lu = ¢(u)
and
(0.2) U+ Lu = (u)

were made by Keller, Osserman, Brezis and Strauss, Loewner and Nirenberg, Brezis
and Véron, Baras and Pierre, Marcus and Véron.

A relation between the equation (0.1) and superdiffusions was established, first,
by S. Watanabe. Dawson and Perkins obtained deep results on the path behavior
of the super-Brownian motion. For applying a superdiffusion to partial differential
equations it is insufficient to consider the mass distribution of a random cloud at
fixed times ¢. A model of a superdiffusion as a system of exit measures from time-
space open sets was developed in [Dyn91c], [Dyn92], [Dyn93]. In particular,
a branching property and a Markov property of such system were established and
used to investigate boundary value problems for semilinear equations. In the present
book we deduce the entire theory of superdiffusion from these properties.

We use a combination of probabilistic and analytic tools to investigate positive
solutions of equations (0.1) and (0.2). In particular, we study removable singulari-
ties of such solutions and a characterization of a solution by its trace on the bound-
ary. These problems were investigated recently by a number of authors. Marcus
and Véron used purely analytic methods. Le Gall, Dynkin and Kuznetsov combined
probabilistic and analytic approach. Le Gall invented a new powerful probabilistic

ix
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tool — a path-valued Markov process called the Brownian snake. In his pioneer-
ing work he used this tool to describe all solutions of the equation Au = u?
bounded smooth planar domain.

Most of the book is devoted to a systematic presentation (in a more general
setting, with simplified proofs) of the results obtained since 1988 in a series of papers
of Dynkin and Dynkin and Kuznetsov. Many results obtained originally by using
superdiffusions are extended in the book to more general equations by applying a
combination of diffusions with purely analytic methods. Almost all chapters involve
a mixture of probability and analysis. Exceptions are Chapters 7 and 9 where the
probability prevails and Chapter 13 where it is absent. Independently of the rest of
the book, Chapter 7 can serve as an introduction to the Martin boundary theory for
diffusions based on Hunt’s ideas. A contribution to the theory of Markov processes
is also a new form of the strong Markov property in a time inhomogeneous setting.

The theory of parabolic partial differential equations has a lot of similarities
with the theory of elliptic equations. Many results on elliptic equations can be easily
deduced from the results on parabolic equations. On the other hand, the analytic
technique needed in the parabolic setting is more complicated and the most results
are easier to describe in the elliptic case.

We consider a parabolic setting in Part 1 of the book. This is necessary for
constructing our principal probabilistic model — branching exit Markov systems.
Superprocesses (including superdiffusions) are treated as a special case of such sys-
tems. We discuss connections between linear parabolic differential equations and
diffusions and between semilinear parabolic equations and superdiffusions. (Diffu-
sions and superdiffusions in Part 1 are time inhomogeneous processes.)

In Part 2 we deal with elliptic differential equations and with time-homogeneous
diffusions and superdiffusions. We apply, when it is possible, the results of Part
1. The most of Part 2 is devoted to the characterization of positive solutions of
equation (0.1) by their traces on the boundary and to the study of the boundary
singularities of such solutions (from both analytic and probabilistic point of view).
Parabolic counterparts of these results are less complete. Some references to them
can be found in bibliographical notes in which we describe the relation of the
material presented in each chapter to the literature on the subject.

Chapter 1 is an informal introduction where we present some of the basic ideas
and tools used in the rest of the book. We consider an elliptic setting and, to
simplify the presentation, we restrict ourselves to a particular case of the Laplacian
A (for L) and to the Brownian and super-Brownian motions instead of general
diffusions and superdiffusions.

In the concluding chapter, we give a brief description of some results not in-
cluded into the book. In particular, we describe briefly Le Gall’s approach to
superprocesses via random snakes (path-valued Markov processes). For a system-
atic presentation of this approach we refer to [Le 99a]. We do not touch some
other important recent directions in the theory of measure-valued processes: the
Fleming-Viot model, interactive measure-valued models... We refer on these sub-
jects to Lecture Notes of Dawson [Daw93] and Perkins [Per01]. A wide range of
topics is covered (mostly, in an expository form) in “An introduction to Superpro-
cesses” by Etheridge [Eth00].

Appendix A and Appendix B contain a survey of basic facts about Markov
processes, martingales and elliptic differential equations. A few open problems are
suggested in the Epilogue.

in a
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