From Stein to Weinstein and Back
Symplectic Geometry of Affine Complex Manifolds

Kai Cieliebak
Yakov Eliashberg
From Stein to Weinstein and Back

Symplectic Geometry of Affine Complex Manifolds
For additional information and updates on this book, visit
www.ams.org/bookpages/coll-59
To my parents, Snut and Hinrich. Kai
To Ada. Yasha
Contents

Preface xi

Chapter 1. Introduction 1
 1.1. An overview 1
 1.2. Plan of the book 6

Part 1. \(J\)-Convexity 9

Chapter 2. \(J\)-Convex Functions and Hypersurfaces 11
 2.1. Linear algebra 11
 2.2. \(J\)-convex functions 13
 2.3. The Levi form of a hypersurface 15
 2.4. Completeness 18
 2.5. \(J\)-convexity and geometric convexity 19
 2.6. Normalized Levi form and mean normal curvature 20
 2.7. Examples of \(J\)-convex functions and hypersurfaces 22
 2.8. Symplectic properties of \(J\)-convex functions 25
 2.9. Computations in \(\mathbb{C}^n\) 27

Chapter 3. Smoothing 31
 3.1. \(J\)-convexity and plurisubharmonicity 31
 3.2. Smoothing of \(J\)-convex functions 34
 3.3. Critical points of \(J\)-convex functions 37
 3.4. From families of hypersurfaces to \(J\)-convex functions 40
 3.5. \(J\)-convex functions near totally real submanifolds 42
 3.6. Functions with \(J\)-convex level sets 48
 3.7. Normalized modulus of \(J\)-convexity 50

Chapter 4. Shapes for \(i\)-Convex Hypersurfaces 57
 4.1. Main models 57
 4.2. Shapes for \(i\)-convex hypersurfaces 59
 4.3. Properties of \(i\)-convex shapes 64
 4.4. Shapes in the subcritical case 67
 4.5. Construction of special shapes 68
 4.6. Families of special shapes 75
 4.7. Convexity estimates 83

Chapter 5. Some Complex Analysis 89
 5.1. Holomorphic convexity 89
 5.2. Relation to \(J\)-convexity 90
 5.3. Definitions of Stein manifolds 93
5.4. Hartogs phenomena 94
5.5. Grauert’s Oka principle 96
5.6. Coherent analytic sheaves on Stein manifolds 99
5.7. Real analytic manifolds 101
5.8. Real analytic approximations 104
5.9. Approximately holomorphic extension of maps from totally real submanifolds 107
5.10. CR structures 108

Part 2. Existence of Stein Structures 113

Chapter 6. Symplectic and Contact Preliminaries 115
6.1. Symplectic vector spaces 115
6.2. Symplectic vector bundles 117
6.3. Symplectic manifolds 118
6.4. Moser’s trick and symplectic normal forms 119
6.5. Contact manifolds and their Legendrian submanifolds 122
6.6. Contact normal forms 125
6.7. Real analytic approximations of isotropic submanifolds 127
6.8. Relations between symplectic and contact manifolds 128

Chapter 7. The h-principles 131
7.1. Immersions and embeddings 131
7.2. The h-principle for isotropic immersions 135
7.3. The h-principle for subcritical isotropic embeddings 136
7.4. Stabilization of Legendrian submanifolds 137
7.5. The existence theorem for Legendrian embeddings 139
7.6. Legendrian knots in overtwisted contact manifolds 141
7.7. Murphy’s h-principle for loose Legendrian embeddings 142
7.8. Directed immersions and embeddings 146
7.9. Discs attached to J-convex boundaries 150

Chapter 8. The Existence Theorem 155
8.1. Some notions from Morse theory 155
8.2. Surrounding stable discs 156
8.3. Existence of complex structures 161
8.4. Existence of Stein structures in complex dimension $\neq 2$ 163
8.5. J-convex surrounding functions 167
8.6. J-convex retracts 171
8.7. Approximating continuous maps by holomorphic ones 174
8.8. Variations on a theme of E. Kallin 181

Part 3. Morse–Smale Theory for J-Convex Functions 185

Chapter 9. Recollections from Morse Theory 187
9.1. Critical points of functions 187
9.2. Zeroes of vector fields 189
9.3. Gradient-like vector fields 192
9.4. Smooth surroundings 198
9.5. Changing Lyapunov functions near critical points 200
CONTENTS

15.1. From Weinstein to Stein: homotopies 295
15.2. Proof of the first Stein deformation theorem 298
15.3. Homotopies of flexible Stein structures 302

Part 5. Stein Manifolds and Symplectic Topology 305

Chapter 16. Stein Manifolds of Complex Dimension Two 307
16.1. Filling by holomorphic discs 307
16.2. Stein fillings 310
16.3. Stein structures on 4-manifolds 320

Chapter 17. Exotic Stein Structures 323
17.1. Symplectic homology 323
17.2. Exotic Stein structures 325

Appendix A. Some Algebraic Topology 329
A.1. Serre fibrations 329
A.2. Some homotopy groups 331

Appendix B. Obstructions to Formal Legendrian Isotopies 335

Appendix C. Biographical Notes on the Main Characters 343
C.1. Complex analysis 343
C.2. Differential and symplectic topology 348

Bibliography 353

Index 361
Preface

In Spring 1996 Yasha Eliashberg gave a Nachdiplomvorlesung (a one semester graduate course) “Symplectic geometry of Stein manifolds” at ETH Zürich. Kai Cieliebak, at the time a graduate student at ETH, was assigned the task to take notes for this course, with the goal of having lecture notes ready for publication by the end of the course. At the end of the semester we had some 70 pages of typed notes, but they were nowhere close to being publishable. So we buried the idea of ever turning these notes into a book.

Seven years later Kai spent his first sabbatical at the Mathematical Sciences Research Institute (MSRI) in Berkeley. By that time, through work of Donaldson and others on approximately holomorphic sections on the one hand, and gluing formulas for holomorphic curves on the other hand, Weinstein manifolds had been recognized as fundamental objects in symplectic topology. Encouraged by the increasing interest in the subject, we dug out the old lecture notes and began turning them into a monograph on Stein and Weinstein manifolds.

Work on the book has continued on and off since then, with most progress happening during Kai’s numerous visits to Stanford University and another sabbatical 2009 that we both spent at MSRI. Over this period of almost 10 years, the content of the book has been repeatedly changed and its scope significantly extended. Some of these changes and extensions were due to our improved understanding of the subject (e.g., a quantitative version of J-convexity which is preserved under approximately holomorphic diffeomorphisms), others due to new developments such as the construction of exotic Stein structures by Seidel and Smith, McLean, and others since 2005, and Murphy’s h-principle for loose Legendrian knots in 2011. In fact, the present formulation of the main theorems in the book only became clear about a year ago. As a result of this process, only a few lines of the original lecture notes have survived in the final text (in Chapters 2–4).

The purpose of the book has also evolved over the past decade. Our original goal was a complete and detailed exposition of the existence theorem for Stein structures in [42]. While this remains an important goal, which we try to achieve in Chapters 2–8, the book has evolved around the following two broader themes: The first one, as indicated by the title, is the correspondence between the complex analytic notion of a Stein manifold and the symplectic notion of a Weinstein manifold. The second one is the extent to which these structures are flexible, i.e., satisfy an h-principle. In fact, until recently we believed the border between flexibility and rigidity to run between subcritical and critical structures, but Murphy’s h-principle extends flexibility well into the critical range.

The book is roughly divided into “complex” and “symplectic” chapters. Thus Chapters 2–5 and 8–10 can be read as an exposition of the theory of J-convex
functions on Stein manifolds, while Chapters 6–7, 9 and 11–14 provide an introduction to Weinstein manifolds and their deformations. However, our selection of material on both the complex and symplectic side is by no means representative for the respective fields. Thus on the complex side we focus only on topological aspects of Stein manifolds, ignoring most of the beautiful subject of several complex variables. On the symplectic side, the most notable omission is the relationship between Weinstein domains and Lefschetz fibrations over the disc.

Over the past 16 years we both gave many lecture courses, seminars, and talks on the subject of this book not only at our home institutions, Ludwig-Maximilians-Universität München and Stanford University, but also at various other places such as the Forschungsinstitut für Mathematik at ETH Zürich, University of Pennsylvania in Philadelphia, Columbia University in New York, the Courant Institute of Mathematical Sciences in New York, University of California in Berkeley, Washington University in St. Louis, the Mathematical Sciences Research Institute in Berkeley, the Institute for Advanced Study in Princeton, and the Alfréd Rényi Institute of Mathematics in Budapest. We thank all these institutions for their support and hospitality.

We thank G. Herold, T. Müller, and S. Prüfer for creating the figures, and J. Wright Sharp for her help with English and LaTeX.

And most of all, we thank our spouses, Suny and Ada, for their continued support.

Kai Cieliebak
Mathematisches Institut
Ludwig-Maximilians-Universität
Theresienstr. 39
80333 München, Germany

Yakov Eliashberg
Department of Mathematics
Stanford University
Stanford, California 94305, USA
Bibliography

Index

admissible partition, 203, 207
almost complex
 manifold, 13
 structure, 4, 13
almost CR manifold, 146
ample set, 146
analytic
 polyhedron, 89
 subvariety, 100
backward invariant set, 199
Bennequin’s inequality, 341
birth-death type
 critical point, 188
 zero, 191
Bishop family, 309
Bott periodicity theorem, 333
boundary connected sum, 321, 325
cancellation family, 207
Cartan’s Theorems A and B, 100
carving, 225
center manifold, 190
Chern class, 117
cobordism, 156
coisotropic
 neighborhood theorem, 122
 submanifold, 119
 subspace, 115
compatible pair, 116–118
complete
 -ly exhausting function, 19
 vector field, 18
completion
 of Liouville domain, 239
 of Weinstein domain, 243
complex
 -ification, 101
 curve, 32
 manifold, 13
 structure, 13
 subspace, 117
 surface, 5
 vector space, 11
concatenation of paths, 140
conformal symplectic normal bundle, 126
contact
 form, 26
 isotopy extension theorem, 127
 structure, 26, 122
contactomorphism, 122
CR
 manifold, 108
 structure, 108
 totally real immersion, 147
creation family, 207
Darboux’s theorem, 118, 125
deformation equivalence, 311
diffeotopy, 120
directed immersion, 147
domain of holomorphy, 95
elementary
 Lyapunov cobordism, 203
 Morse cobordism, 156
 Smale cobordism, 203
 Smale homotopy, 207
embryonic
 critical point, 188
 zero, 190
end
 connected sum, 326
 of a 4-manifold, 320
exact
 Lagrangian immersion, 118
 symplectic manifold, 118, 237
 symplectic map, 237
exhausting function, 1
field of complex tangencies, 15
finite type, 4, 238
flexible
 Stein structure, 251
 Weinstein structure, 251
flow box, 198
flow box, 198
formal
INDEX

directed embedding, 148
isotropic embedding, 136
isotropic isotopy, 137
Legendrian embedding, 136
Forstnerič–Slapar theorem, 180
front projection, 123
generalized Morse function, 1
Gompf’s theorem, 4, 163, 322
gradient
- like vector field, 155, 192
vector field, 15, 18
Grassmannian, 332
Grauer
- Oka principle, 96
- theorem, 94
- tube, 103
Gray’s stability theorem, 127
Gromov, 131, 306
- Landweber theorem, 161

h-cobordism theorem, 210
h-principle
- for CR totally real embeddings, 149
- for directed embeddings, 148
- for directed immersions, 147
- for immersions, 131
- for isotropic embeddings, 137
- for isotropic immersions, 135
- for loose Legendrian embeddings, 145
- for totally real embeddings, 148
- for totally real immersions, 147
- for totally real submersions, 149
Hörmander–Wermer theorem, 174
handle slide, 212
Hartogs phenomenon, 94
Hermitian
- form, 11
- metric, 11
- structure, 116, 117
- vector space, 116
Hessian, 14, 15
Hironaka’s theorem, 109
holomorphic
- convexity, 89
- filling, 108, 129
- hull, 89
- line bundle, 24
holonomy, 209, 239, 256
homotopy
- fiber, 330
- lifting property, 329
hyperbolic zero, 25, 190
i-convex
- function, 1
- shape, 66
index
- of critical point, 14, 187
of zero of vector field, 190
integrable almost complex structure, 13
isocontact immersion, 126
isotopy, 133
isotropic
- immersion, 123
- isotopy, 137
- monomorphism, 135
- neighborhood theorem, 121, 126
- setup, 126
- submanifold, 26, 119
- subspace, 115
J-convex
- CR structure, 108
- function, 1, 13, 33
- hypersurface, 16
- pseudo-isotopy, 6, 303
- quadratic form, 12
- retract, 171
- surrounding, 156
- surrounding function, 167
J-lc function, 48
J-orthogonal, 26, 169
J-transverse, 154
Kähler
- filling, 109
- form, 119
- manifold, 14
- metric, 119
- Kallin’s lemma, 183
- knot, 131
Lagrangian
- neighborhood theorem, 122
- projection, 123
- submanifold, 119
- subspace, 115
Legendrian
- immersion, 123
- isotopy, 141
- knot, 141
- monomorphism, 135
Levi
- flat hypersurface, 16
- form, 16
- problem, 91
Liouville
- cobordism, 239
- domain, 239
- field, 25, 237
- form, 25, 237
- homotopy, 239
- manifold, 237
- loose Legendrian submanifold, 143
- lower half-disc, 204
Lyapunov
- cobordism, 202
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>function</td>
<td>192</td>
</tr>
<tr>
<td>mean normal curvature</td>
<td>21</td>
</tr>
<tr>
<td>minimal complex surface</td>
<td>5, 308</td>
</tr>
<tr>
<td>McLean’s theorem</td>
<td>326</td>
</tr>
<tr>
<td>monomorphism</td>
<td>131</td>
</tr>
<tr>
<td>Morse</td>
<td>187</td>
</tr>
<tr>
<td>Narasimhan’s theorem</td>
<td>20</td>
</tr>
<tr>
<td>negative line bundle</td>
<td>24</td>
</tr>
<tr>
<td>Newlander–Nirenberg theorem</td>
<td>13</td>
</tr>
<tr>
<td>Nijenhuis tensor</td>
<td>13</td>
</tr>
<tr>
<td>nondegenerate 2-form</td>
<td>25</td>
</tr>
<tr>
<td>nullity</td>
<td>187</td>
</tr>
<tr>
<td>Oka</td>
<td>90</td>
</tr>
<tr>
<td>Steen domain</td>
<td>244</td>
</tr>
<tr>
<td>Stein cobordism</td>
<td>250</td>
</tr>
<tr>
<td>Struwe’s differential equation</td>
<td>68</td>
</tr>
<tr>
<td>Poincaré–Hopf index theorem</td>
<td>139</td>
</tr>
<tr>
<td>polynomial</td>
<td>133</td>
</tr>
<tr>
<td>convexity</td>
<td>89</td>
</tr>
<tr>
<td>hull</td>
<td>89</td>
</tr>
<tr>
<td>positive line bundle</td>
<td>24</td>
</tr>
<tr>
<td>profile</td>
<td>188, 208</td>
</tr>
<tr>
<td>pseudo-isotopy</td>
<td>5, 213</td>
</tr>
<tr>
<td>real analytic function</td>
<td>101</td>
</tr>
<tr>
<td>reducible 3-manifold</td>
<td>315</td>
</tr>
<tr>
<td>Reeb vector field</td>
<td>122</td>
</tr>
<tr>
<td>Richberg’s theorem</td>
<td>34</td>
</tr>
<tr>
<td>rotation invariant</td>
<td>337</td>
</tr>
<tr>
<td>second fundamental form</td>
<td>21</td>
</tr>
<tr>
<td>self-indexing Morse function</td>
<td>211</td>
</tr>
<tr>
<td>self-intersection</td>
<td>131</td>
</tr>
<tr>
<td>stabilization</td>
<td>137</td>
</tr>
<tr>
<td>of Legendrian submanifold</td>
<td>137</td>
</tr>
<tr>
<td>of Weinstein manifold</td>
<td>243</td>
</tr>
<tr>
<td>stable</td>
<td>156, 203</td>
</tr>
<tr>
<td>homotopy group</td>
<td>333</td>
</tr>
<tr>
<td>manifold</td>
<td>25, 190</td>
</tr>
<tr>
<td>standard complex structure</td>
<td>1</td>
</tr>
<tr>
<td>contact structure</td>
<td>123</td>
</tr>
<tr>
<td>symplectic form</td>
<td>11</td>
</tr>
<tr>
<td>cobordism</td>
<td>164, 244</td>
</tr>
<tr>
<td>domain</td>
<td>2, 244</td>
</tr>
<tr>
<td>filling</td>
<td>109, 310</td>
</tr>
<tr>
<td>homotopy</td>
<td>246</td>
</tr>
<tr>
<td>manifold</td>
<td>1, 93, 244</td>
</tr>
<tr>
<td>structure</td>
<td>5, 244</td>
</tr>
<tr>
<td>submanifold</td>
<td>94</td>
</tr>
<tr>
<td>surface</td>
<td>4</td>
</tr>
<tr>
<td>Stiefel manifold</td>
<td>332</td>
</tr>
<tr>
<td>Struwe’s differential equation</td>
<td>68</td>
</tr>
<tr>
<td>subcritical</td>
<td>250</td>
</tr>
<tr>
<td>Stein structure</td>
<td>250</td>
</tr>
<tr>
<td>subharmonic function</td>
<td>31</td>
</tr>
<tr>
<td>surgery</td>
<td>316</td>
</tr>
<tr>
<td>exact sequence</td>
<td>325</td>
</tr>
</tbody>
</table>
symplectic
 basis, 116
 filling, 129
 form, 25
 group, 117
 homology, 324
 manifold, 118
 neighborhood theorem, 121
 normal bundle, 126
 pseudo-isotopy, 292
 structure, 117
 submanifold, 119
 subspace, 115
 vector space, 115
symplectization, 128
symplectomorphism, 118
tame almost complex structure, 308
target
 equivalent function, 2
 reparametrization, 2
Thurston–Bennequin invariant
 absolute, 339
 relative, 339
tight contact structure, 141
totally real
 epimorphism, 149
 submanifold, 22
 submersion, 149
 subspace, 116
transfer map, 324
two-index theorem, 212
unstable
 disc, 203
 manifold, 190
weak
 -ly J-convex, 13, 16, 98
 -ly gradient-like vector field, 192
 Lyapunov function, 192
 Lyapunov pair, 192
Weinstein
 cobordism, 243
 domain, 3, 243
 filling, 244
 homotopy, 246
 Lagrangian neighborhood theorem, 122
 manifold, 2, 243
 structure, 2, 243
Whitney
 disc, 133
 embedding theorem, 132
 trick, 133
A beautiful and comprehensive introduction to this important field.

—Dusa McDuff, Barnard College, Columbia University

This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors’ new results.

—Tomasz Mrowka, MIT

This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from “Stein to Weinstein”) and its applications in the complex geometric world of Stein manifolds (the road “back”). This is the first book which systematically explores this connection, thus providing a new approach to the classical subject of Stein manifolds. It also contains the first detailed investigation of Weinstein manifolds, the symplectic counterparts of Stein manifolds, which play an important role in symplectic and contact topology.

Assuming only a general background from differential topology, the book provides introductions to the various techniques from the theory of functions of several complex variables, symplectic geometry, h-principles, and Morse theory that enter the proofs of the main results. The main results of the book are original results of the authors, and several of these results appear here for the first time. The book will be beneficial for all students and mathematicians interested in geometric aspects of complex analysis, symplectic and contact topology, and the interconnections between these subjects.

For additional information and updates on this book, visit www.ams.org/bookpages/coll-59

AMS on the Web
www.ams.org