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Foreword: A selective overview

This preface contains a summary of the contents of the volume. We
start with a rough description of the main theorems. We then give short
descriptions of the contents of the various chapters. At the end, we will
add a couple of remarks on the overall structure of the proof, notably our
use of induction. The preface can serve as an introduction. The beginning
of the actual text, in the form of the first two or three sections of Chapter
1, represents a different sort of introduction. It will be our attempt to
motivate what follows from a few basic principles. A reader might consider
going directly to these sections after reading the first half of the preface here.
One could then return to the more technical second half (on the organization
of the volume) only as needed later.

Automorphic representations for GLpNq have been important objects of
study for many years. We recall that GLpNq, the general linear group of
invertible pN ˆNq-matrices, assigns a group GLpN,Rq to any commutative
ring R with identity. For example, R could be a fixed number field F , or the
ring A “ AF of adèles over F . Automorphic representations of GLpNq are
the irreducible representations of GLpN,Aq that occur in the decomposition
of its regular representation on L2

`

GLpN,F qzGLpN,Aq
˘

. This informal
definition is made precise in [L6], and carries over to any connected reductive
group G over F .

The primary aim of the volume is to classify the automorphic represen-
tations of special orthogonal and symplectic groups G in terms of those of
GLpNq. Our main tool will be the stable trace formula for G, which until re-
cently was conditional on the fundamental lemma. The fundamental lemma
has now been established in complete generality, and in all of its various
forms. In particular, the stabilization of the trace formula is now known
for any connected group. However, we will also require the stabilization of
twisted trace formulas for GLpNq and SOp2nq. Since these have yet to be
established, our results will still be conditional.

A secondary purpose will be to lay foundations for the endoscopic study
of more general groups G. It is reasonable to believe that the methods we
introduce here extend to groups that Ramakrishnan has called quasiclassi-
cal. These would comprise the largest class of groups whose representations
could ultimately be tied to those of general linear groups. Our third goal
is expository. In adopting a style that is sometimes more discursive than
strictly necessary, we have tried to place at least some of the techniques

vii



viii FOREWORD: A SELECTIVE OVERVIEW

into perspective. We hope that there will be parts of the volume that are
accessible to readers who are not experts in the subject.

Automorphic representations are interesting for many reasons, but among
the most fundamental is the arithmetic data they carry. Recall that

GLpN,Aq “

„
ź

v

GLpN,Fvq

is a restricted direct product, taken over (equivalence classes of) valuations
v of F . An automorphic representation of GLpNq is a restricted direct
product

π “

„
â

v

πv,

where πv is an irreducible representation of GLpN,Fvq that is unramified
for almost all v. We recall that πv is unramified if v is nonarchimedean, and
πv contains the trivial representation of the hyperspecial maximal compact
subgroup GLpN, ovq of integral points in GLpN,Fvq. The representation is
then parametrized by a semisimple conjugacy class

cvpπq “ cpπvq

in the complex dual group

GLpNq
^

“ GLpN,Cq

of GLpNq. (See [Bo, (6.4), (6.5)] for the precise assertion, as it applies
to a general connected reductive group G.) It is the relations among the
semisimple conjugacy classes cvpπq that will contain the fundamental arith-
metic information.

There are three basic theorems for the group GLpNq that together give
us a pretty clear understanding of its representations. The first is local,
while others, which actually predate the first, are global.

The first theorem is the local Langlands correspondence for GLpNq. It
was established for archimedean fields by Langlands, and more recently for p-
adic (which is to say nonarchimedean) fields by Harris, Taylor and Henniart.
It classifies the irreducible representations of GLpN,Fvq at all places v by
(equivalence classes of) semisimple, N -dimensional representations of the
local Langlands group

LFv “

#

WFv , v archimedean,

WFv ˆ SUp2q, otherwise.

In particular, an unramified representation of GLpN,Fvq corresponds to an
N -dimensional representation of LFv that is trivial on the product of SUp2q

with the inertia subgroup IFv of the local Weil group WFv . It therefore
corresponds to a semisimple representation of the cyclic quotient

LFv{IFv ˆ SUp2q – WFv{IFv – Z,

and hence a semisimple conjugacy class in GLpN,Cq, as above.



FOREWORD: A SELECTIVE OVERVIEW ix

The first of the global theorems is due to Jacquet and Shalika. If π is
an irreducible (admissible) representation of GLpN,Aq, one can form the
family of semisimple conjugacy classes

cpπq “ lim
ÝÑ
S

�

cvpπq “ cpπvq : v R S
(

in GLpN,Cq, defined up to a finite set of valuations S. In other words,
cpπq is an equivalence class of families, two such families being equivalent if
they are equal for almost all v. The theorem of Jacquet and Shalika asserts
that if an automorphic representation π of GLpNq is restricted slightly to
be isobaric [L7, §2], it is uniquely determined by cpπq. This theorem can
be regarded as a generalization of the theorem of strong multiplicity one for
cuspidal automorphic representations of GLpNq.

The other global theorem for GLpNq is due to Moeglin and Waldspurger.
It characterizes the automorphic (relatively) discrete spectrum of GLpNq in
terms of the set of cuspidal automorphic representations. Since Langlands’
general theory of Eisenstein series characterizes the full automorphic spec-
trum of any group G in terms of discrete spectra, this theorem characterizes
the automorphic spectrum for GLpNq in terms of cuspidal automorphic rep-
resentations. Combined with the first global theorem, it classifies the full
automorphic spectrum of GLpNq explicitly in terms of families cpπq attached
to cuspidal automorphic representations of general linear groups.

Our goal is to generalize these three theorems. As we shall see, there is
very little that comes easily. It has been known for many years that the rep-
resentations of groups other than GLpNq have more structure. In particular,
they should separate naturally into L-packets, composed of representations
with the same L-functions and ε-factors. This was demonstrated for the
group

G “ SLp2q “ Spp2q

by Labesse and Langlands, in a paper [LL] that became a model for Lang-
lands’s conjectural theory of endoscopy [L8], [L10].

The simplest and most elegant way to formulate the theory of endoscopy
is in terms of the global Langlands group LF . This is a hypothetical global
analogue of the explicit local Langlands groups LFv defined above. It is
thought to be a locally compact extension

1 ÝÑ KF ÝÑ LF ÝÑ WF ÝÑ 1

ofWF by a compact connected groupKF . (See [L7, §2], [K3, §9].) However,
its existence is very deep, and could well turn out to be the final theorem
in the subject to be proved! One of our first tasks, which we address in
§1.4, will be to introduce makeshift objects to be used in place of LF . For
simplicity, however, let us describe our results here in terms of LF .
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Our main results apply to the case that G is a quasisplit special orthog-
onal or symplectic group.˚ They are stated as three theorems in §1.5. The
proof of these theorems will then take up much of the rest of the volume.

Theorem 1.5.1 is the main local result. It contains a local Langlands
parametrization of the irreducible representations of GpFvq, for any p-adic
valuation v of F , as a disjoint union of finite L-packets Πφv . These are
indexed by local Langlands parameters, namely L-homomorphisms

φv : LFv ÝÑ
LGv

from LFv to the local L-group LGv “ pG ¸ GalpF v{Fvq of G. The theorem
includes a way to index the representations in an L-packet Πφv by linear
characters on a finite abelian group Sφv attached to φv. Since similar results
for archimedean valuations v are already known from the work of Shelstad,
we obtain a classification of the representations of each local group GpFvq.

Theorem 1.5.1 also contains a somewhat less precise description of the
representations of GpFvq that are local components of automorphic repre-
sentations. These fall naturally into rather different packets Πψv , indexed
according to the conjectures of [A8] by L-homomorphisms

(1) ψv : LFv ˆ SUp2q ÝÑ
LGv,

with bounded image. The theorem includes the assertion, also conjectured
in [A8], that the representations in these packets are all unitary.

Theorem 1.5.2 is the main global result. As a first approximation, it
gives a rough decomposition

(2) Rdisc “
à

ψ

Rdisc,ψ

of the representation Rdisc of GpAq on the automorphic discrete spectrum
L2
disc

`

GpF qzGpAq
˘

. The indices can be thought of as L-homomorphisms

(3) ψ : LF ˆ SUp2q ÝÑ
LG

of bounded image that do not factor through any proper parabolic subgroup

of the global L-group LG “ pG¸GalpF {F q. They have localizations (1) de-
fined by conjugacy classes of embeddings LFv Ă LF , or rather the makeshift
analogues of such embeddings that we formulate in §1.4. The localizations
ψv of ψ are unramified at almost all v, and consequently lead to a family

cpψq “ lim
ÝÑ
S

�

cvpψq “ cpψvq : v R S
(

of equivalence classes of semisimple elements in LG. The rough decompo-
sition (2) is of interest as it stands. It implies that G has no embedded
eigenvalues, in the sense of unramified Hecke operators. In other words, the
family cpψq attached to any global parameter ψ in the decomposition of the

˚It is understood here, and in everything that follows, that G is “classical”, in the
sense that it is not an outer twist of the split group SOp8q by a triality automorphism (of
order 3).
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automorphic discrete spectrum is distinct from any family obtained from
the continuous spectrum. This follows from the nature of the parameters ψ
in (3), and the application of the theorem of Jacquet-Shalika to the natural
image of cpψq in the appropriate complex general linear group.

Theorem 1.5.2 also contains a finer decomposition

(4) Rdisc,ψ “
à

π

mψpπqπ,

for any global parameter ψ. The indices π range over representations in the
global packet of ψ, defined as a restricted direct product of local packets pro-
vided by Theorem 1.5.1. The multiplicities mψpπq are given by an explicit
reciprocity formula in terms of the finite abelian groups Sψv , and their global
analogue Sψ. We thus obtain a decomposition of the automorphic discrete
spectrum of G into irreducible representations of GpAq. We shall say that a
parameter φ “ ψ is generic if it is trivial on the factor SUp2q. The represen-
tations π P Πφ, with φ generic and mφpπq ‰ 0, are the constituents of the
automorphic discrete spectrum that are expected to satisfy the analogue for
G of Ramanujan’s conjecture. It ψ is not generic, the formula for mψpπq has
an extra ingredient. It is a sign character εψ on Sψ, defined (1.5.6) in terms
of symplectic root numbers. That the discrete spectrum should be governed
by objects of such immediate arithmetic significance seems quite striking.

Theorem 1.5.2 has application to the question of multiplicity one. Sup-
pose that π is an irreducible constituent of the automorphic discrete spec-
trum of G that also lies in some generic global packet Πφ. We shall then
show that the multiplicity of π in the discrete spectrum equals 1 unless
pG “ SOp2n,Cq, in which case the multiplicity is either 1 or 2, according to an
explicit condition we shall give. In particular, if G equals either SOp2n` 1q

or Spp2nq, the automorphic representations in the discrete spectrum that
are expected to satisfy Ramanujan’s conjecture all have multiplicity 1. Local
results of Moeglin [M4] on nontempered p-adic packets suggest that similar
results hold for all automorphic representations in the discrete spectrum.

Theorems 1.5.1 and 1.5.2 are founded on the proof of several cases of
Langlands’ principle of functoriality. In fact, our basic definitions will be
derived from the functorial correspondence from G to GLpNq, relative to the
standard representation of LG into GLpN,Cq. Otherwise said, our construc-
tion of representations of G will be formulated in terms of representations of
GLpNq. The integer N of course equals 2n, 2n` 1 and 2n as G ranges over
the groups SOp2n`1q, Spp2nq and SOp2nq in the three infinite families Bn,

Cn and Dn, with dual groups pG being equal to Spp2n,Cq, SOp2n`1,Cq and
SOp2n,Cq, respectively. The third case SOp2nq, which includes quasisplit
outer twists, is complicated by the fact that it is really the nonconnected
group Op2nq that is directly tied to GLpNq. This is what is responsible for
the failure of multiplicity one described above. It is also the reason we have
not yet specified the implicit equivalence relation for the local and global
parameters (1) and (3). Let us now agree that they are to be taken up to
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pG-conjugacy if G equals SOp2n ` 1q or Spp2nq, and up to conjugacy by
Op2n,Cq, a group whose quotient

rOutN pGq “ Op2n,Cq{SOp2n,Cq

acts by outer automorphism on pG “ SOp2n,Cq, if G equals SOp2nq. This
is the understanding on which the decomposition (2) holds.

In the text, we shall write rΨpGvq for the set of equivalence classes of local

parameters (1). The packet rΠψv attached to any ψv P rΨpGvq will then be

composed of rOutN pGvq-orbits of equivalence classes of irreducible represen-

tations (with rOutN pGq being trivial in case G equals SOp2n`1q or Spp2nq).

We will write rΨpGq for the set of equivalence classes of general global pa-

rameters ψ, and rΨ2pGq for the subset of classes with the supplementary

condition of (3). The packet of any ψ P rΨpGq will then be a restricted direct
product

rΠψ “

„
â

v

rΠψv

of local packets. It is this set that corresponds to an (isobaric) automorphic

representation of GLpNq. In particular, the global packets rΠψ, rather than

the individual (orbits of) representations π in rΠψ, are the objects that retain
the property of strong multiplicity one from GLpNq. Similarly, the global

packets rΠψ attached to parameters ψ P rΨ2pGq retain the qualitative prop-
erties of automorphic discrete spectrum of GLpNq. They come with a sort
of Jordan decomposition, in which the semisimple packets correspond to the
generic global parameters ψ, and contain the automorphic representations
that are expected to satisfy the G-analogue of Ramanujan’s conjecture. In
view of these comments, we see that Theorem 1.5.2 can be regarded as a
simultaneous analogue for G of both of the global theorems for GLpNq.

Theorem 1.5.3 is a global supplement to Theorem 1.5.2. Its first assertion

applies to global parameters φ P rΨpGq that are both generic and simple, in
the sense that they correspond to cuspidal automorphic representations πφ of

GLpNq. Theorem 1.5.3(a) asserts that the dual group pG is orthogonal (resp.
symplectic) if and only if the symmetric square L-function Lps, πφ, S

2q (resp.
the skew-symmetric square L-function Lps, πφ,Λ

2q) has a pole at s “ 1.

Theorem 1.5.3(b) asserts that the Rankin-Selberg ε-factor ε
`

1
2 , πφ1 ˆ πφ2

˘

equals 1 for any pair of generic simple parameters φi P rΦpGiq such that pG1

and pG2 are either both orthogonal or both symplectic. These two assertions
are automorphic analogues of well known properties of Artin L-functions
and ε-factors. They are interesting in their own right. But they are also an
essential part of our induction argument. We will need them in Chapter 4 to
interpret the terms in the trace formula attached to compound parameters

ψ P rΨpGq.
This completes our summary of the main theorems. The first two sec-

tions of Chapter 1 contain further motivation, for the global Langlands group
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LF in §1.1, and the relations between representations of G and GLpNq in
§1.2. In §1.3, we will recall the three basic theorems for GLpNq. Section 1.4
is given over to our makeshift substitutes for global Langlands parameters,
while §1.5 contains the formal statements of the theorems.

As might be expected, the three theorems will have to be established
together. The unified proof will take us down a long road, which starts
in Chapter 2, and crosses much diverse territory before coming to an end
finally in §8.2. The argument is ultimately founded on harmonic analysis,
represented locally by orbital integrals and characters, and globally by the
trace formula. This of course is at the heart of the theory of endoscopy. We
refer the reader to the introductory remarks of individual sections, where
we have tried to offer guidance and motivation. We shall be content here
with a minimal outline of the main stages.

Chapter 2 is devoted to local endoscopy. It contains a more precise
formulation (Theorem 2.2.1) of the local Theorem 1.5.1. This provides for a

canonical construction of the local packets rΠψv in terms of twisted characters
on GLpNq. Chapter 2 also includes the statement of Theorem 2.4.1, which
we call the local intertwining relation. This is closely related to Theorem
1.5.1 and its refinement Theorem 2.2.1, and from a technical standpoint, can
be regarded as our primary local result. It includes a delicate construction
of signs, which will be critical for the interpretation of terms in the trace
formula.

Chapter 3 is devoted to global endoscopy. We will recall the discrete part
of the trace formula in §3.1, and its stabilization in §3.2. We are speaking
here of those spectral terms that are linear combinations of automorphic
characters, and to which all of the other terms are ultimately dedicated.
They are the only terms from the trace formula that will appear explicitly in
this volume. In §3.5, we will establish criteria for the vanishing of coefficients
in certain identities (Proposition 3.5.1, Corollary 3.5.3). We shall use these
criteria many times throughout the volume in drawing conclusions from the
comparison of discrete spectral terms.

In general, we will have to treat three separate cases of endoscopy. They
are represented respectively by pairs pG,G1q, where G is one of the groups
to which Theorems 1.5.1, 1.5.2 and 1.5.3 apply and G1 is a corresponding

endoscopic datum, pairs
`

rGpNq, G
˘

in which rGpNq is the twisted general

linear group rG0pNq “ GLpNq and G is a corresponding twisted endoscopic

datum, and pairs p rG, rG1q in which rG is a twisted even orthogonal group
rG0 “ SOp2nq and rG1 is again a corresponding twisted endoscopic datum.

The first two cases will be our main concern. However, the third case p rG, rG1q

is also a necessary part of the story. Among other things, it is forced on us
by the need to specify the signs in the local intertwining relation. For the
most part, we will not try to treat the three cases uniformly as cases of the
general theory of endoscopy. This might have been difficult, given that we
have to deduce many local and global results along the way. At any rate, the
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separate treatment of the three cases gives our exposition a more concrete
flavour, if at the expense of some possible sacrifice of efficiency.

In Chapter 4, we will study the comparison of trace formulas. Specif-
ically, we will compare the contribution (4.1.1) of a parameter ψ to the
discrete part of the trace formula with the contribution (4.1.2) of ψ to the
corresponding endoscopic decomposition. We begin with the statement of
Theorem 4.1.2, which we call the stable multiplicity formula. This is closely
related to Theorem 1.5.2, and from a technical standpoint again, is our pri-
mary global result. Together with the global intertwining relation (Corollary
4.2.1), which we state as a global corollary of Theorem 2.4.1, it governs how
individual terms in trace formulas are related. Chapter 4 represents a stan-
dard model, in the sense that if we grant the analogues of the two primary
theorems for general groups, it explains how the terms on the right hand
sides of (4.1.1) and (4.1.2) match. This is discussed heuristically in Sections
4.7 and 4.8. However, our real aim is in the opposite direction. It is to derive
Theorems 2.4.1 and 4.1.2 for our groups G from the standard model, and
whatever else we can bring to bear on the problem. This is the perspective
of Sections 4.3 and 4.4. In §4.5, we combine the analysis of these sections
with a general induction hypothesis to deduce the stable multiplicity for-
mula and the global intertwining relation for many ψ. Section 4.6 contains
the proof of two critical sign lemmas that are essential ingredients of the
parallel Sections 4.3 and 4.4.

Chapter 5 is the center of the volume. It is a bridge between the global
discussion of Chapters 3 and 4 and the local discussion of Chapters 6 and
7. It also represents a transition from the general comparisons of Chapter 4
to the study of the remaining parameters needed to complete the induction
hypotheses. These exceptional cases are the crux of the matter. In §5.2 and
§5.3, we shall extract several identities from the standard model, in which
we display the possible failure of Theorems 2.4.1 and 4.1.2 as correction

terms. Section 5.3 applies to the critical case of a parameter ψ P rΨ2pGq,
and calls for the introduction of a supplementary parameter ψ`. In §5.4,
we shall resolve the global problems for families of parameters ψ that are
assumed to have certain rather technical local properties.

Chapter 6 applies to generic local parameters. It contains a proof of
the local Langlands classification for our groups G (modified by the outer
automorphism in the case G “ SOp2nq). We will first have to embed a given
local parameter into a family of global parameters with the local constraints
of §5.4. This will be the object of Sections 6.2 and 6.3, which rest ultimately
on the simple form of the invariant trace formula for G. We will then have
to extract the required local information from the global results obtained in
§5.4. In §6.4, we will deduce the generic local intertwining relation from its
global counterpart in §5.4. Then in §6.5, we will stabilize the orthogonality
relations that are known to hold for elliptic tempered characters. This will
allow us to quantify the contributions from the remaining elliptic tempered
characters, the ones attached to square integrable representations. We will
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use the information so obtained in §6.6 and §6.7. In these sections, we shall
establish Theorems 2.2.1 and 1.5.1 for the remaining “square integrable”

Langlands parameters φ P rΦ2pGq. Finally, in §6.8, we shall resolve the
various hypotheses taken on at the beginning of Chapter 6.

Chapter 7 applies to nongeneric local parameters. It contains the proof
of the local theorems in general. In §7.2, we shall use the construction of
§6.2 to embed a given nongeneric local parameter into a family of global
parameters, but with local constraints that differ slightly from those of §5.4.
We will then deduce special cases of the local theorems that apply to the
places v with local constraints. These will follow from the local theorems for
generic parameters, established in Chapter 6, and the duality operator of
Aubert and Schneider-Stuhler, which we review in §7.1. We will then exploit
our control over the places v to derive the local theorems at the localization
ψ “ 9ψu that represents the original given parameter.

We will finish the proof of the global theorems in the first two sections
of Chapter 8. Armed with the local theorems, and the resulting refinements
of the lemmas from Chapter 5, we will be able to establish almost all of the
global results in §8.1. However, there will still to be one final obstacle. It is

the case of a simple parameter ψ P rΨsimpGq, which among other things will
be essential for a resolution of our induction hypotheses. An examination
of this case leads us to the initial impression that it will be resistant to
all of our earlier techniques. Fortunately, with further reflection, we will
find that there is a way to treat it after all. We will introduce a second
supplementary parameter ψ``, which appears ungainly at first, but which,
with the support of two rather intricate lemmas, takes us to a successful
conclusion.

Section 8.2 is the climax of our long running induction argument, as well
as its most difficult point of application. Its final resolution is what brings
us to the end of the proof. We will then be free in §8.3 for some general
reflections that will give us some perspective on what has been established.
In §8.4, we will sharpen our results for the groups SOp2nq in which the
outer automorphism creates some ambiguity. We will use the stabilized trace
formula to construct the local and global L-packets for generic parameters
predicted for these groups by the conjectural theory of endoscopy. In §8.5, we
will describe an approximation of a part of the global Langlands group LF ,
which is tailored to the classical groups of this volume. It could potentially
be used in place of some of the ad hoc global parameters of §1.4 to streamline
the statements of the global theorems.

We shall discuss inner forms of orthogonal and symplectic groups in
Chapter 9. The automorphic representation theory for inner twists is in
some ways easier for knowing what happens in the case of quasisplit groups.
In particular, the stable multiplicity formula is already in place, since it
applies only to the quasisplit case. However, there are also new difficulties
for inner twists, particularly in the local case. We shall describe some of



xvi FOREWORD: A SELECTIVE OVERVIEW

these in Sections 9.1–9.3. We shall then state analogues for inner twists of
the main theorems, with the understanding that their proofs will appear
elsewhere.

Having briefly summarized the various chapters, we should add some
comment on our use of induction. As we have noted, induction is a central
part of the unified argument that will carry us from Chapter 2 to Section
8.2. We will have two kinds of hypotheses, both based on the positive integer
N that indexes the underlying general linear group GLpNq. The first kind
includes various ad hoc assumptions, such as those implicit in some of our

definitions. For example, the global parameter sets rΨpGq defined in §1.4 are
based on the inductive application of two “seed” Theorems 1.4.1 and 1.4.2.
The second will be the formal induction hypotheses introduced explicitly at
the beginning of §4.3, and in more refined form at the beginning of §5.1.
They assert essentially that the stated theorems are all valid for parameters
of rank less than N . In particular, they include the informal hypotheses
implicit in the definitions.

We do not actually have to regard the earlier, informal assumptions
as inductive. They really represent implicit appeals to stated theorems,
in support of proofs of what amount to corollaries. In fact, from a logical
standpoint, it is simpler to treat them as inductive assumptions only after we
introduce the formal induction hypotheses in §4.3 and §5.1. For a little more
discussion of this point, the reader can consult the two parallel Remarks
following Corollaries 4.1.3 and 4.2.4.

The induction hypotheses of §5.1 are formulated for an abstract family
rF of global parameters. They pertain to the parameters ψ P rF of rank
less than N , and are supplemented also by a hypothesis (Assumption 5.1.1)

for certain parameters in rF of rank equal to N . The results of Chapter

5 will be applied three times, to three separate families rF . These are the
family of generic parameters with local constraints used to establish the local
classification of Chapter 6, the family of nongeneric parameters with local
constraints used to deduce the local results for nontempered representations
in Chapter 7, and the family of all global parameters used to establish the
global theorems in the first two sections of Chapter 8. In each of these cases,

the assumptions have to be resolved for the given family rF . In the case of
Chapter 6, the induction hypotheses are actually imposed in two stages. The
local hypothesis at the beginning of §6.3 is needed to construct the family
rF , on which we then impose the global part of the general hypothesis of
Chapter 5 at the beginning of §6.4. The earlier induction hypotheses of
§4.3 apply to general global parameters of rank less than N . They are used
in §4.3–§4.6 to deduce the global theorems for parameters that are highly
reducible. Their general resolution comes only after the proof of the global
theorems in §8.2.

Our induction assumptions have of course to be distinguished from the
general condition (Hypothesis 3.2.1) on which our results rely. This is the
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stabilization of the twisted trace formula for the two groups GLpNq and
SOp2nq. As a part of the condition, we implicitly include twisted ana-
logues of the two local results that have a role in the stabilization of the
ordinary trace formula. These are the orthogonality relations for elliptic
tempered characters of [A10, Theorem 6.1], and the weak spectral transfer
of tempered p-adic characters given by [A11, Theorems 6.1 and 6.2]. The
stabilization of orthogonality relations in §6.5 requires twisted orthogonality
relations for GLpNq, as well as those of [A10]. It will be an essential part
of the local classification in Chapter 6. The two theorems from [A11] can
be regarded as a partial generalization of the fundamental lemma for the
full spherical Hecke algebra [Hal]. (Their global proof of course depends on
the basic fundamental lemma for the unit, established by Ngo.) We will use
them in combination with their twisted analogues in the proofs of Propo-
sition 2.1.1 and Corollary 6.7.4. The first of these gives the image of the
twisted transfer of functions from GLpNq, which is needed in the proof of
Proposition 3.5.1. The second gives a relation among tempered characters
that completes the local classification.

There is one other local theorem whose twisted analogues for GLpNq

and SOp2nq we shall also have to take for granted. It is Shelstad’s strong
spectral transfer of tempered archimedean characters, which is to say, her
endoscopic classification of representations of real groups. This of course
is a major result. Together with its two twisted analogues, it gives the
archimedean cases of the local classification in Theorems 2.2.1 and 2.2.4. We
shall combine it with a global argument in Chapter 6 to establish the p-adic
form of these theorems. The general twisted form of Shelstad’s endoscopic
classification appears to be within reach. It is likely to be established soon
by some extension of recent work by Mezo [Me] and Shelstad [S8].

Finally, let me include a comment on notation. Because our main theo-
rems require interlocking proofs, which consume a good part of the volume,
there is always the risk of losing one’s way. Until the end of §8.2, assertions
as Theorems are generally stated with the understanding that their proofs
will usually be taken up much later (unless of course they are simply quoted
from some other source). On the other hand, assertions denoted Proposi-
tions, Lemmas or Corollaries represent results along the route, for which the
reader can expect a timely proof. The theorems stated in §8.4 are not part
of the central induction argument. Their proofs, which are formally labeled
as such, follow relatively soon after their statements. The theorems stated
in §9.4 and §9.5 apply to inner twists. They will be proved elsewhere.

The actual mathematical notation of the volume might appear uncon-
ventional at times. I have tried to structure it so as to reflect implicit
symmetries in the various objects it represents. With luck, it might help
a reader navigate the arguments without necessarily being aware of such
symmetries.

The three main theorems of the volume were described in [A18, §30].
I gave lecture courses on them in 1994–1995 at the Institute for Advanced
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Study and the University of Paris VII, and later in 2000, again at the Insti-
tute for Advanced Study. Parts of Chapter 4 were also treated heuristically
in the earlier article [A9]. In writing this volume, I have added some top-
ics to my original notes. These include the local Langlands classification
for GLpNq, the treatment of inner twists in Chapter 9 and the remarks on
Whittaker models in §8.3. I have also had to fill unforeseen gaps in the
notes. For example, I did not realize that twisted endoscopy for SOp2nq

was needed to formulate the local intertwining relation. In retrospect, it is
probably for the best that this second case of twisted endoscopy does have a
role here, since it forces us to confront a general phenomenon in a concrete
situation. I have tried to make this point explicit in §2.4 with the discussion
surrounding the short exact sequence (2.4.10). In any case, I hope that I
have accounted for most of the recent work on the subject, in the references
and the text. There will no doubt be omissions. I most regret not being
able to describe the results of Moeglin on the structure of p-adic packets
rΠψv ([M1]–[M4]). It is clearly an important problem to establish analogues
of her results for archimedean packets.

Acknowledgments: I am greatly indebted to the referee, for a close and
careful reading of an earlier draft of the manuscript (which went to the end
of §8.2), and for many very helpful comments. I also thank Chung Pang
Mok, who read a later draft of the manuscript, and offered further helpful
suggestions.
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(2002), 673–693.

[BV] D. Barbasch and D. Vogan, Unipotent representations of complex semisimple Lie
groups, Ann. of Math. 121 (1985), 41–110.

[Be] J. Bernstein, P -invariant distributions on GLpnq, in Lie Group Representations
II, Lecture Notes in Math., vol. 1041, Springer, New York, 1984, 50–102.

[BDK] J. Bernstein, P. Deligne and D. Kazhdan, Trace Paley-Wiener theorem for re-
ductive p-adic groups, J. d’Analyse Math. 47 (1986), 180–192.

[BZ] J. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups
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[W10] , Préparation à la stabilisation de la formule des traces tordue II: inte-

grales orbitales et endoscopie sur un corps non-archimédien, preprint.
[We1] H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch

lineare Transformationen, Gesammelte Abhandlungen, Bd. II, 68, 543–647.
[We2] , The Theory of Groups and Quantum Mechanics, 1931, rept. Dover Pub-

lications, 1950.
[Wh] D. Whitehouse, The twisted weighted fundamental lemma for the transfer of

automorphic forms from GSpp4q to GLp4q, Astérisque 302 (2005), 291–436.
[Z] A. Zelevinsky, Induced representations of reductive p-adic groups II. On irre-

ducible representations of GLpnq, Ann. Sci. École Norm. Sup. 13 (1980), 165–
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ĝ
´
ψ , 219

hL
pΛq, 260

h, 123

ipSq, 169
iGP , 389
iψpxq, 193
invpγ, γ˚

q, 541

�p rw, πq, 89
�pw, π, ψq, 91

mpπq, 365
mpψq, 477
mpτq, 350
mprρ, rπq, nprπ, rρq, 67
mdiscp 9πq, 314
mφ “ mpφq “ |ΦpG,φq|, 346
mψpεψ, πq, 565
mψ, 47
pm

´
ψ , 220

nψpξ, 9πU q, 424
npπ, ρq, 156
npπ, τq, 156
npψ, φq, 440
n

9φp 9πq, 362

n
9ψp 9πq, 421

nφpπ˚
q, 371

nφpξ, πq, 364
nψpξ, πq, 426
rnpψ, φq, 68
rnφpξ, πq, 365

ropG˚
q, 260

oα, 225

rP pw,ψλq, 96
rGP , 389

r´
ψ pwq, 223

rGψ pwq, 190
rP 1|P pφλq, 81

rGdisc,ψpfq, 188
0rGdisc,φpfq, 500
0rGdisc,ψpfq, 192

s0pwq “ sgn0
pwq, 169

sψ, 32
s0ψpuq, 191
sx, 204
sGdisc,ψpfq, 193
0sGdisc,ψpfq, 199

t ÝÑ φt, 486
tV p‹q “ tV

`

πV

˘

, 500
9t8p‹q “ t8

`

9π8, π‹pξq
˘

, 492

ux, 208
ru, 99, 175

wπ, 89
w_, 432
wu, 98, 175
w0

u, 99
wx, 265
rw, 89
rwpNOq, 10

xx, τy, 349
x ÝÑ xv, 40
x1, 269
xs, 198
xu, 99, 175

ApGq, 515
A˚

F , 241
A8

S , 129
A

xM , 97

A`
G,8, 122

AS , 129
AcusppGq Ă A2pGq Ă ApGq, 19
AcusppNq Ă A2pNq Ă ApNq Ă A`

pNq,
20

Aψ, 218
AregpNq, 507
rAcusp, 475

Bψ ÝÑ Aψ, 531
Bψ,der, 532

C 1
ψ, 263

Cψ, 191
Cχ,ωpw, πλq, 113



NOTATIONAL INDEX 585

CApG,χq, 140
CsimpNq Ă C2pNq Ă CpNq Ă CautpNq, 26
Csim,reg, 506
Csim,regpNq, 505
C˚
sim,reg, 506
rCpNq, 28
rCApG,χq, 143
rCsim, 475
rCsim,reg, 508
rC˚
sim,reg, 508

D “ DG, 389
Da, 393
Db, 393
pD˚
v , 407

D “ Csimp1q, 503
Dc, 504
rDc, 508

EpGq, 537
EpG,G1

q, 537
Epφ, λq, 180
EscpGq, 538

E 1
ψ,ell “ EpS1

ψ,ellq, 194

E 1
ψ,ellpxq, 199

EpGq, 131
EpΣq, 169
EellpGq, 133
EellpSq “ EpSellq, 170

Eellp rGq Ă Ep rGq, 14
Eψpxq, 199

Eψ “ EpSψq, 194
EsimpGq Ă EellpGq Ă EpGq, 13
Eψ,ellpxq, 199

Eψ,ell “ EpSψ,ellq, 194
9
rEpNq, 311
9
rEvpNq, 311
rEM pNq, 158
rEsimpNq Ă rEellpNq Ă rEpNq, 12

9F , 310
F , 57, 151
FS , 162
9
rF “ rFp 9φ1, . . . , 9φrq, 331, 332
rF , 253, 443
rF2pNq, 254
rFell, 254
rFsimpGq, 254

GpAq
1, 19

pG,ψq, 514
pG1,G1, s1, ξ1

q, 130

pG0, θ, ωq, 125
G_, 148, 447
pG_, ψ_

q, 523
G`, 49, 273
G_

`, 278
G1 ÝÑ C1, 542
Gφ, 29, 302
Greg, 157
G``, 461
G_

``, 461
G`,´, 271, 274
Greg,ellpF q, 157
pG, 1
rG, 14
rGpNq, 11
LG, 1

H1
pF,G˚

adq, 515
H1

algpWK{F , Gq, 542
HG, 121
HP , 124
Hψ, 219
H´

ψ , 219
Hψ,ξ, 219
H´

ψ,ξ, 219

HpGq, 41, 46
HS

un, 139
9
rHpNq, 311
9
rHvpNq, 311
rHpGq, 46
rHcusppNq, 317

I 1
spec, 463
I 1
end, 463

Ip rf, rgq “ pIp rfN , rgN q, 350

Ipf, gq “ pIpfG, gGq, 350
I1, 327
I´, 456
IF Ă WF , 43
IGpπ, γq, 470
Iψ “ Iψ,O

š

Iψ,S, 33
Iψ “ I`

ψ pGq
š

I´
ψ pGq, 35

I
rGprπ, rγq, 478

Io “ Iψ,o, 531

Idisc,ψp rfq, 144
Idisc,ψpfq, 144, 167
Idisc,t,cpfq, 139

Idisc,tpfq “ IGdisc,tpfq, 124
rIGpπ, γq, 471

rIdisc, 9ψp
9
rfq, 378

IpGq, 52



586 NOTATIONAL INDEX

IE
pGq, 554

IP,ψpfq, 145
IP,t,cpχ, fq, 138
IP,tpχ, fq, 123, 127
rIE

pNq, 60
rIP pπψ, Nq, 116
rIc
cusppNq, 352
rIsimpGq, 367
0I 1

end, 463
0I 1

spec, 463

JP p rw, πλq, 96
JP 1|P pπλq, 82

KF , 41
K˚

ad “ KG˚
ad
, 515

Kψ “ Iψ
š

Jψ

š

J_
ψ , 29

KpGq, 389
Kψ, 217
K´

ψ , 218

L, 260, 447
Lps, φq, 16
Lps, φ1 ˆ φ2q, 16
Lps, π, rq, 21
Lps, π1 ˆ π2q, 16
L` “ G1 ˆ L, 273
LF , 3, 4
L˚

F ÝÑ WF , 241
Lc ÝÑ WF , 505
L˚

F,reg ÝÑ WF , 507

L2
disc,ψ

`

GpF qzGpAq
˘

, 147
rLc ÝÑ WF , 509
rL˚
F,reg ÝÑ WF , 510

L “ LpM0q, 124
Lφ ÝÑ ΓF , F local, 346
Lψ, 30

M – GLpN1q, 269
M`, 271, 274
M0, 123
MP pw,χλq, 124
Mx, 205
M``, 461
M_

``, 461
MP 1|P p 9πλq, 85
MP,ψpwq, 145
MP,t,cpw,χq, 138
MP,tpw,χq, 127
Msim,bddpNq, 18
Msim,bddpNq Ă Φsim,bddpNq Ă ΦpNq, 18
ĂMu, 99

N`, 49, 273
Nφ, 16
N``, 461
N`,´, 271
Nψ, 100
N

1
ψ,regpxq, 191

N
˚, 177

NψpG,Mq, 98
Nψpwq, 183
Nψpxq, 191
Nψ,regpxq, 191

OutGpG1
q, 13, 131

rOutN pGq, 12

P`, 281
P_

` , 281
PF Ă IF , 43
PS , 163
Pψ, 98
PpMq, 80

R1
Pv

prv, rπv, ψvq, 293
Rpσq, 154
Rpτq, 350
R˚, 177
RP pw, π, ψq, 96
RP pw, rπ, ψq, 97
RP pr, σq, 154
Rψ, 100
RψpG,Mq, 98
RP 1|P pπλ, ψλq, 83

RG
disc,ψpfq, 148

RN
disc,ψ, 179

R
rG
disc,ψ, 177

Rkk1 pgq, 215
9
rRdisc, 9ψp

9
rfq, 378

rRpNq, 179
rRpσq, 154

S1
Ñ S1

G, 389

S1
disc,t “ SG1

disc,t, 134

Spf, gq “ pSpfG, gGq, 351

S ÝÑ rSN “ S
rGpNq

, 391

S˚, 177
S2, 49
Sell, 170
S8puq, 310
S8pu, V q “ SpU, V q “ U Y V , 398
S8, 310
Su

8pV q, 400
Su

8, 311



NOTATIONAL INDEX 587

SφpG0
q, 241

Sψ “ SψpGq, 241
Sψ, 6, 32
S˚
ψ , 185

Skpgq, 216
Ss, 169
Sdisc,ψpfq, 144
Sdisc,t, 134

Sψ,sc ÝÑ Sψ, 527
pS, 53
pS1
disc,ψpf 1

q, 145, 168

S1
ψ,ell, 194

Sψ, 170, 527

Sφ,reg,ell, 346

Sφ,reg, 346
rSG

pφ, δq, 471
0SG

disc,φpfq, 499
0S˚

disc,ψpf˚
q, 257

0
pS1
disc,ψpf 1

q, 199
SpGq, 53
S˚, 177
Sψ, 6, 32
S1
ψ, 100

Sψ,ell, 265
Sψ,sc Ñ Rψ, 535
Sψ,sc ÝÑ Sψ, 527
rS0

pLq, 260
rSc
cusppGq, 353
rSψ, 178
rS`
ψ , 78

rSsimpGq, 367
rSψ,u, 99

T pGq, 537
T pG,G1

q, 537
T pφq, F global, 481
T pφq, F local, 480
Tψ, 100
TscpGq, 538
Tψ, 174

Tψ,x, 204
T E
G , 554

U “ S8puq “ S8 Y tuu, 398

V “ V p rFq, 287

W 1
ψ,reg, 190

W pMqreg, 124
W pSq, 169
W pπq, 112
W pσq, 154
WF , 3
W˚, 177
WG

0 “ WG
pM0q, 124

Wψ, 100
WψpG,Mq, 98
Wψpπq, 97
W 0

ψ, 100
Wψpxq, 191
W 0

ψpG,Mq, 98
WregpSq, 169

X˚
pGqF , 19

XellpGq, 347
X “ Acuspp1q, 504
XellpGq, 347
Xc, 504
pXG, χq, 126

YellpGq, 347
YellpGq, 347

ZpHq, 122
ZpSq, 169

Zp pGq
Γ, 5

Z1
algpWK{F , G

˚
q, 542

Zψ “ ZpBψq, 531
9Z8,u, 312
pZsc, 515
pZΓ
sc, 515

Zp pG1
q
Γ, 133

ZpNq, 68
Zψ, 527
Zψ,sc, 527





Subject Index

adjoint transfer factor, 58
admissible, 549
admissible invariant distribution, 389
anisotropic, 517
automorphic representation, vii

Bernstein center, 388
bilinear forms, 515

central character of a parameter, 306
compatible families

decomposable, 151
global, 151
local, 57

Coxeter-Dynkin diagram, 517
cuspidal function

global, 19
local, 59

cuspidal lift, 352

discrete part of the trace formula, 124
dual group, 1
duality operator, 389

elliptic, 12
elliptic element

in T pGq, 157
elliptic endoscopic datum, 11, 133
elliptic representation

of ΛF , 7
embedded eigenvalues, 187
endoscopic datum, 11, 52, 130
ε-pair, 254
ε-parameter, 254
exponents, 318
extended pure inner twist, 542

fundamental lemma, 53

Galois cohomology, 514
generalized Ramanujan conjecture, 25

generic parameter

in rF , 256
generic representation, 110
global intertwining relation, 177
globally pB, χq-generic, 483

Hasse principle, 513, 524, 525
Hecke type, 129

for F , 152

for rEellpNq, 151

inertia subgroup, 43
wild, 43

infinitesimal character, 68
inner form, 514
inner twist, 514
intertwining operator

normalized, 83, 96
unnormalized, 96

invariant orbital integral, 52
isobaric automorphic representation, 3,

22
isomorphism, 514
isomorphism of endoscopic data, 12

L-equivalence, 4
L-group, 1
L-homomorphism, 2
L-packet, 4

tempered, 42
λ-factor, 90
Langlands group (global), ix, 3
Levi embedding, 57
Levi subset, 59
local intertwining relation

for rG, 108

for rGpNq, 118
for G, 100

locally pB, χq-generic, 483
locally G-relevant, 526

589



590 SUBJECT INDEX

locally relevant, 131
LSK conjecture, 53

multiset, 42

normalized character, 470
normalized stable character, 471

orthogonality relations, 354, 477

parabolic subset, 59
standard, 390

pseudo-z-embedding, 544
pseudocoefficient, 312, 368
pure inner twist, 540

quadratic parameter, 396

R-group, 100, 154
Rankin-Selberg convolution

global, 22
local, 17

regular automorphic representation of
GLpNq, 504

regular Hecke family, 504
root number

orthogonal, 96
symplectic, 96

S-packet (S-set, set over S), 41
self-dual representation

of ΛF , 7
self-intertwining operator, 96
simple parameter, 29
skew-symmetric square L-function, 49
Speh character, 431
spherical fundamental lemma, 143
spherical parameter, 304
spherical representation, 304
stabilization, 134
stable linear form, 53
stable multiplicity formula, 171
stable orbital integral, 53
standard representation

of GpF q, 155

of rGpN,F q, 66
of L˚

F,reg, 507

of rL˚
F,reg, 511

of Lψ, 216
strongly isomorphic, 537
strongly regular, 52
supercuspidal representation, 18
symmetric inner twist, 552
symmetric orbit oα, 225

symmetric square L-function, 49

τ -equivalent, 160
tamely ramified parameter, 396
Tate-Nakayama pairing, 541
the discrete part of the trace formula,

124
the packet rΣψ, 388
the three exceptional cases, 333
Tits indices, 515, 517
transfer factor

global, 131
local, 52

twisted cuspidal function, 317
twisted endoscopic group, 11

unnormalized intertwining operator, 82
unramified group, 53

virtual character, 430

weighted fundamental lemma, 135
Weil group, 3
Weyl character formula, 477
Whittaker datum, 55
Whittaker functional, 62, 110
Whittaker integral, 111
Whittaker model, 110

pZ{2Zq-symmetry, 482, 502
z-embedding, 542
z-extension, 542
Zelevinsky conjecture, 390



Within the Langlands program, endoscopy is a fundamental 
process for relating automorphic representations of one group 
with those of another. In this book, Arthur establishes an 
endoscopic classification of automorphic representations of 
orthogonal and symplectic groups G . The representations are 
shown to occur in families (known as global L-packets and 
A-packets), which are parametrized by certain self-dual auto-
morphic representations of an associated general linear group 
G L(N ). The central result is a simple and explicit formula for 
the multiplicity in the automorphic discrete spectrum of G  for 
any representation in a family.

The results of the volume have already had significant applications: to the local 
Langlands correspondence, the construction of unitary representations, the existence 
of Whittaker models, the analytic behaviour of Langlands L-functions, the spectral 
theory of certain locally symmetric spaces, and to new phenomena for symplectic 
epsilon-factors. One can expect many more. In fact, it is likely that both the results 
and the techniques of the volume will have applications to almost all sides of the 
Langlands program.

The methods are by comparison of the trace formula of G  with its stabilization (and 
a comparison of the twisted trace formula of G L(N ) with its stabilization, which 
is part of work in progress by Moeglin and Waldspurger). This approach is quite 
different from methods that are based on L-functions, converse theorems, or the 
theta correspondence. The comparison of trace formulas in the volume ought to be 
applicable to a much larger class of groups. Any extension at all will have further 
important implications for the Langlands program.
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