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Foreword: A selective overview

This preface contains a summary of the contents of the volume. We
start with a rough description of the main theorems. We then give short
descriptions of the contents of the various chapters. At the end, we will
add a couple of remarks on the overall structure of the proof, notably our
use of induction. The preface can serve as an introduction. The beginning
of the actual text, in the form of the first two or three sections of Chapter
1, represents a different sort of introduction. It will be our attempt to
motivate what follows from a few basic principles. A reader might consider
going directly to these sections after reading the first half of the preface here.
One could then return to the more technical second half (on the organization
of the volume) only as needed later.

Automorphic representations for GL(N) have been important objects of
study for many years. We recall that GL(N), the general linear group of
invertible (N x N)-matrices, assigns a group GL(N, R) to any commutative
ring R with identity. For example, R could be a fixed number field F', or the
ring A = Ap of adeles over F. Automorphic representations of GL(N) are
the irreducible representations of GL(N, A) that occur in the decomposition
of its regular representation on L*(GL(N,F)\GL(N,A)). This informal
definition is made precise in [L6], and carries over to any connected reductive
group G over F.

The primary aim of the volume is to classify the automorphic represen-
tations of special orthogonal and symplectic groups G in terms of those of
GL(N). Our main tool will be the stable trace formula for G, which until re-
cently was conditional on the fundamental lemma. The fundamental lemma
has now been established in complete generality, and in all of its various
forms. In particular, the stabilization of the trace formula is now known
for any connected group. However, we will also require the stabilization of
twisted trace formulas for GL(N) and SO(2n). Since these have yet to be
established, our results will still be conditional.

A secondary purpose will be to lay foundations for the endoscopic study
of more general groups G. It is reasonable to believe that the methods we
introduce here extend to groups that Ramakrishnan has called quasiclassi-
cal. These would comprise the largest class of groups whose representations
could ultimately be tied to those of general linear groups. Our third goal
is expository. In adopting a style that is sometimes more discursive than
strictly necessary, we have tried to place at least some of the techniques

vii



viii FOREWORD: A SELECTIVE OVERVIEW

into perspective. We hope that there will be parts of the volume that are
accessible to readers who are not experts in the subject.

Automorphic representations are interesting for many reasons, but among
the most fundamental is the arithmetic data they carry. Recall that

GL(N,A) = 1:[ GL(N, F,)

is a restricted direct product, taken over (equivalence classes of) valuations
v of F. An automorphic representation of GL(N) is a restricted direct
product

P=®
v

where 7, is an irreducible representation of GL(N, F},) that is unramified
for almost all v. We recall that 7, is unramified if v is nonarchimedean, and
7, contains the trivial representation of the hyperspecial maximal compact
subgroup GL(N,0,) of integral points in GL(N, F,). The representation is
then parametrized by a semisimple conjugacy class

cy(m) = c(my)
in the complex dual group
GL(N)" = GL(N,C)

of GL(N). (See [Bo, (6.4), (6.5)] for the precise assertion, as it applies
to a general connected reductive group G.) It is the relations among the
semisimple conjugacy classes ¢, () that will contain the fundamental arith-
metic information.

There are three basic theorems for the group GL(N) that together give
us a pretty clear understanding of its representations. The first is local,
while others, which actually predate the first, are global.

The first theorem is the local Langlands correspondence for GL(N). It
was established for archimedean fields by Langlands, and more recently for p-
adic (which is to say nonarchimedean) fields by Harris, Taylor and Henniart.
It classifies the irreducible representations of GL(N, F,) at all places v by
(equivalence classes of) semisimple, N-dimensional representations of the
local Langlands group

Lp, =

v

We,, v archimedean,
Wg, x SU(2), otherwise.
In particular, an unramified representation of GL(N, F,) corresponds to an
N-dimensional representation of L, that is trivial on the product of SU(2)
with the inertia subgroup Ip, of the local Weil group Wp,. It therefore
corresponds to a semisimple representation of the cyclic quotient
LE//IFU X SU(2) = WE//IFU = Z7

and hence a semisimple conjugacy class in GL(N, C), as above.
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The first of the global theorems is due to Jacquet and Shalika. If 7 is
an irreducible (admissible) representation of GL(N,A), one can form the
family of semisimple conjugacy classes

co(m) = lim {ey(m) = ¢(my) : v ¢ S}
S

in GL(N,C), defined up to a finite set of valuations S. In other words,
c(m) is an equivalence class of families, two such families being equivalent if
they are equal for almost all v. The theorem of Jacquet and Shalika asserts
that if an automorphic representation m of GL(N) is restricted slightly to
be isobaric [L7, §2], it is uniquely determined by ¢(7). This theorem can
be regarded as a generalization of the theorem of strong multiplicity one for
cuspidal automorphic representations of GL(V).

The other global theorem for GL(N) is due to Moeglin and Waldspurger.
It characterizes the automorphic (relatively) discrete spectrum of GL(N) in
terms of the set of cuspidal automorphic representations. Since Langlands’
general theory of Eisenstein series characterizes the full automorphic spec-
trum of any group G in terms of discrete spectra, this theorem characterizes
the automorphic spectrum for GL(N) in terms of cuspidal automorphic rep-
resentations. Combined with the first global theorem, it classifies the full
automorphic spectrum of GL(N) explicitly in terms of families ¢(7) attached
to cuspidal automorphic representations of general linear groups.

Our goal is to generalize these three theorems. As we shall see, there is
very little that comes easily. It has been known for many years that the rep-
resentations of groups other than GL(N) have more structure. In particular,
they should separate naturally into L-packets, composed of representations
with the same L-functions and e-factors. This was demonstrated for the

group
G = SL(2) = Sp(2)

by Labesse and Langlands, in a paper [LL] that became a model for Lang-
lands’s conjectural theory of endoscopy [L8], [L10].

The simplest and most elegant way to formulate the theory of endoscopy
is in terms of the global Langlands group Lg. This is a hypothetical global
analogue of the explicit local Langlands groups Lp, defined above. It is
thought to be a locally compact extension

l— K — Lp — Wrp — 1

of W by a compact connected group Kr. (See [L7, §2], [K3, §9].) However,
its existence is very deep, and could well turn out to be the final theorem
in the subject to be proved! One of our first tasks, which we address in
§1.4, will be to introduce makeshift objects to be used in place of L. For
simplicity, however, let us describe our results here in terms of Lp.
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Our main results apply to the case that G is a quasisplit special orthog-
onal or symplectic group.* They are stated as three theorems in §1.5. The
proof of these theorems will then take up much of the rest of the volume.

Theorem 1.5.1 is the main local result. It contains a local Langlands
parametrization of the irreducible representations of G(F;), for any p-adic
valuation v of F', as a disjoint union of finite L-packets Il . These are
indexed by local Langlands parameters, namely L-homomorphisms

¢v: Lp, — LG’U

v

from Lp, to the local L-group G, = G x Gal(F,/F,) of G. The theorem
includes a way to index the representations in an L-packet Il by linear
characters on a finite abelian group Sy, attached to ¢,. Since similar results
for archimedean valuations v are already known from the work of Shelstad,
we obtain a classification of the representations of each local group G(F;).

Theorem 1.5.1 also contains a somewhat less precise description of the
representations of G(F,) that are local components of automorphic repre-
sentations. These fall naturally into rather different packets II,, , indexed
according to the conjectures of [A8] by L-homomorphisms

(1) Yy : Lp, x SU(2) — L@,

v

with bounded image. The theorem includes the assertion, also conjectured
in [A8], that the representations in these packets are all unitary.

Theorem 1.5.2 is the main global result. As a first approximation, it
gives a rough decomposition

(2) Raisc = @ Raisc,p
Y

of the representation Rgisc of G(A) on the automorphic discrete spectrum
L2..(G(F)\G(A)). The indices can be thought of as L-homomorphisms

disc
(3) Y: LpxSU2) — LG

of bounded image that do not factor through any proper parabolic subgroup
of the global L-group “G = G x Gal(F/F). They have localizations (1) de-
fined by conjugacy classes of embeddings Ly, < LF, or rather the makeshift
analogues of such embeddings that we formulate in §1.4. The localizations
1, of ¢ are unramified at almost all v, and consequently lead to a family
c(¥) =1im {c,(¥) = c(yhy) : v ¢ S}
S

of equivalence classes of semisimple elements in “G. The rough decompo-
sition (2) is of interest as it stands. It implies that G has no embedded
eigenvalues, in the sense of unramified Hecke operators. In other words, the
family c(v)) attached to any global parameter v in the decomposition of the

*It is understood here, and in everything that follows, that G is “classical”, in the
sense that it is not an outer twist of the split group SO(8) by a triality automorphism (of
order 3).
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automorphic discrete spectrum is distinct from any family obtained from
the continuous spectrum. This follows from the nature of the parameters ¢
in (3), and the application of the theorem of Jacquet-Shalika to the natural
image of ¢(¢) in the appropriate complex general linear group.

Theorem 1.5.2 also contains a finer decomposition

(4) RdiSC,’(/) = @ Ly (77) T,

for any global parameter . The indices 7 range over representations in the
global packet of 1, defined as a restricted direct product of local packets pro-
vided by Theorem 1.5.1. The multiplicities m,;(m) are given by an explicit
reciprocity formula in terms of the finite abelian groups Sy, , and their global
analogue Sy. We thus obtain a decomposition of the automorphic discrete
spectrum of G into irreducible representations of G(A). We shall say that a
parameter ¢ = 1) is generic if it is trivial on the factor SU(2). The represen-
tations 7 € Iy, with ¢ generic and mg(m) # 0, are the constituents of the
automorphic discrete spectrum that are expected to satisfy the analogue for
G of Ramanujan’s conjecture. It ¢ is not generic, the formula for m,(7) has
an extra ingredient. It is a sign character e, on Sy, defined (1.5.6) in terms
of symplectic root numbers. That the discrete spectrum should be governed
by objects of such immediate arithmetic significance seems quite striking.
Theorem 1.5.2 has application to the question of multiplicity one. Sup-
pose that 7 is an irreducible constituent of the automorphic discrete spec-
trum of G that also lies in some generic global packet ILy;. We shall then
sllow that the multiplicity of 7 in the discrete spectrum equals 1 unless
G = SO(2n,C), in which case the multiplicity is either 1 or 2, according to an
explicit condition we shall give. In particular, if G equals either SO(2n + 1)
or Sp(2n), the automorphic representations in the discrete spectrum that
are expected to satisfy Ramanujan’s conjecture all have multiplicity 1. Local
results of Moeglin [M4] on nontempered p-adic packets suggest that similar
results hold for all automorphic representations in the discrete spectrum.
Theorems 1.5.1 and 1.5.2 are founded on the proof of several cases of
Langlands’ principle of functoriality. In fact, our basic definitions will be
derived from the functorial correspondence from G to GL(N), relative to the
standard representation of “G into GL(N,C). Otherwise said, our construc-
tion of representations of G will be formulated in terms of representations of
GL(N). The integer N of course equals 2n, 2n + 1 and 2n as G ranges over
the groups SO(2n+1), Sp(2n) and SO(2n) in the three infinite families B,,,
C,, and D, with dual groups G being equal to Sp(2n,C), SO(2n+1,C) and
SO(2n,C), respectively. The third case SO(2n), which includes quasisplit
outer twists, is complicated by the fact that it is really the nonconnected
group O(2n) that is directly tied to GL(N). This is what is responsible for
the failure of multiplicity one described above. It is also the reason we have
not yet specified the implicit equivalence relation for the local and global
parameters (1) and (3). Let us now agree that they are to be taken up to
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é—conjugacy if G equals SO(2n + 1) or Sp(2n), and up to conjugacy by
O(2n,C), a group whose quotient

Outn (@) = O(2n,C)/SO(2n,C)

acts by outer automorphism on G = SO(2n,C), if G equals SO(2n). This
is the understanding on which the decomposition (2) holds.

In the text, we shall write \TI(GU) for the set of equivalence classes of local
parameters (1). The packet ﬁwv attached to any 1, € U(G,) will then be
composed of Out ~(Gy)-orbits of equivalence classes of irreducible represen-
tations (with Outy (@) being trivial in case G equals SO(2n+1) or Sp(2n)).
We will write \TJ(G) for the set of equivalence classes of general global pa-
rameters ¢, and \Tlg (G) for the subset of classes with the supplementary
condition of (3). The packet of any ¢ € U(G) will then be a restricted direct
product

Iy = ) Iy,
v
of local packets. It is this set that corresponds to an (isobaric) automorphic

representation of GL(N). In particular, the global packets IL;, rather than

the individual (orbits of) representations 7 in ﬁw, are the objects that retain
the property of strong multiplicity one from GL(N). Similarly, the global
packets ﬁw attached to parameters 1 € \IJQ(G) retain the qualitative prop-
erties of automorphic discrete spectrum of GL(N). They come with a sort
of Jordan decomposition, in which the semisimple packets correspond to the
generic global parameters 1, and contain the automorphic representations
that are expected to satisfy the G-analogue of Ramanujan’s conjecture. In
view of these comments, we see that Theorem 1.5.2 can be regarded as a
simultaneous analogue for G of both of the global theorems for GL(N).

Theorem 1.5.3 is a global supplement to Theorem 1.5.2. Its first assertion
applies to global parameters ¢ € \TJ(G) that are both generic and simple, in
the sense that they correspond to cuspidal automorphic representations g of
GL(N). Theorem 1.5.3(a) asserts that the dual group G is orthogonal (resp.
symplectic) if and only if the symmetric square L-function L(s, 74, S?) (resp.
the skew-symmetric square L-function L(s,ms, A?)) has a pole at s = 1.
Theorem 1.5.3(b) asserts that the Rankin-Selberg e-factor 5(%, Ty X 7r¢2)
equals 1 for any pair of generic simple parameters ¢; € CTD(GZ) such that 61
and ég are either both orthogonal or both symplectic. These two assertions
are automorphic analogues of well known properties of Artin L-functions
and e-factors. They are interesting in their own right. But they are also an
essential part of our induction argument. We will need them in Chapter 4 to
interpret the terms in the trace formula attached to compound parameters
e V(G).

This completes our summary of the main theorems. The first two sec-
tions of Chapter 1 contain further motivation, for the global Langlands group
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Lr in §1.1, and the relations between representations of G and GL(N) in
§1.2. In §1.3, we will recall the three basic theorems for GL(V). Section 1.4
is given over to our makeshift substitutes for global Langlands parameters,
while §1.5 contains the formal statements of the theorems.

As might be expected, the three theorems will have to be established
together. The unified proof will take us down a long road, which starts
in Chapter 2, and crosses much diverse territory before coming to an end
finally in §8.2. The argument is ultimately founded on harmonic analysis,
represented locally by orbital integrals and characters, and globally by the
trace formula. This of course is at the heart of the theory of endoscopy. We
refer the reader to the introductory remarks of individual sections, where
we have tried to offer guidance and motivation. We shall be content here
with a minimal outline of the main stages.

Chapter 2 is devoted to local endoscopy. It contains a more precise
formulation (Theorem 2.2.1) of the local Theorem 1.5.1. This provides for a
canonical construction of the local packets ﬁwv in terms of twisted characters
on GL(N). Chapter 2 also includes the statement of Theorem 2.4.1, which
we call the local intertwining relation. This is closely related to Theorem
1.5.1 and its refinement Theorem 2.2.1, and from a technical standpoint, can
be regarded as our primary local result. It includes a delicate construction
of signs, which will be critical for the interpretation of terms in the trace
formula.

Chapter 3 is devoted to global endoscopy. We will recall the discrete part
of the trace formula in §3.1, and its stabilization in §3.2. We are speaking
here of those spectral terms that are linear combinations of automorphic
characters, and to which all of the other terms are ultimately dedicated.
They are the only terms from the trace formula that will appear explicitly in
this volume. In §3.5, we will establish criteria for the vanishing of coefficients
in certain identities (Proposition 3.5.1, Corollary 3.5.3). We shall use these
criteria many times throughout the volume in drawing conclusions from the
comparison of discrete spectral terms.

In general, we will have to treat three separate cases of endoscopy. They
are represented respectively by pairs (G, G’), where G is one of the groups
to which Theorems 1.5.1, 1.5.2 and 1.5.3 apply and G’ is a corresponding
endoscopic datum, pairs (CNJ(N ), G) in which G(N) is the twisted general
linear group G°(N) = GL(N) and G is a corresponding twisted endoscopic
datum, and pairs (é, G’ ) in which G is a twisted even orthogonal group
GO = SO(2n) and G s again a corresponding twisted endoscopic datum.
The first two cases will be our main concern. However, the third case (G, &)
is also a necessary part of the story. Among other things, it is forced on us
by the need to specify the signs in the local intertwining relation. For the
most part, we will not try to treat the three cases uniformly as cases of the
general theory of endoscopy. This might have been difficult, given that we
have to deduce many local and global results along the way. At any rate, the
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separate treatment of the three cases gives our exposition a more concrete
flavour, if at the expense of some possible sacrifice of efficiency.

In Chapter 4, we will study the comparison of trace formulas. Specif-
ically, we will compare the contribution (4.1.1) of a parameter 1 to the
discrete part of the trace formula with the contribution (4.1.2) of 9 to the
corresponding endoscopic decomposition. We begin with the statement of
Theorem 4.1.2, which we call the stable multiplicity formula. This is closely
related to Theorem 1.5.2, and from a technical standpoint again, is our pri-
mary global result. Together with the global intertwining relation (Corollary
4.2.1), which we state as a global corollary of Theorem 2.4.1, it governs how
individual terms in trace formulas are related. Chapter 4 represents a stan-
dard model, in the sense that if we grant the analogues of the two primary
theorems for general groups, it explains how the terms on the right hand
sides of (4.1.1) and (4.1.2) match. This is discussed heuristically in Sections
4.7 and 4.8. However, our real aim is in the opposite direction. It is to derive
Theorems 2.4.1 and 4.1.2 for our groups G from the standard model, and
whatever else we can bring to bear on the problem. This is the perspective
of Sections 4.3 and 4.4. In §4.5, we combine the analysis of these sections
with a general induction hypothesis to deduce the stable multiplicity for-
mula and the global intertwining relation for many . Section 4.6 contains
the proof of two critical sign lemmas that are essential ingredients of the
parallel Sections 4.3 and 4.4.

Chapter 5 is the center of the volume. It is a bridge between the global
discussion of Chapters 3 and 4 and the local discussion of Chapters 6 and
7. It also represents a transition from the general comparisons of Chapter 4
to the study of the remaining parameters needed to complete the induction
hypotheses. These exceptional cases are the crux of the matter. In §5.2 and
§5.3, we shall extract several identities from the standard model, in which
we display the possible failure of Theorems 2.4.1 and 4.1.2 as correction
terms. Section 5.3 applies to the critical case of a parameter ¢ € \TIQ(G),
and calls for the introduction of a supplementary parameter ¥,. In §5.4,
we shall resolve the global problems for families of parameters ¢ that are
assumed to have certain rather technical local properties.

Chapter 6 applies to generic local parameters. It contains a proof of
the local Langlands classification for our groups G (modified by the outer
automorphism in the case G = SO(2n)). We will first have to embed a given
local parameter into a family of global parameters with the local constraints
of §5.4. This will be the object of Sections 6.2 and 6.3, which rest ultimately
on the simple form of the invariant trace formula for G. We will then have
to extract the required local information from the global results obtained in
§5.4. In §6.4, we will deduce the generic local intertwining relation from its
global counterpart in §5.4. Then in §6.5, we will stabilize the orthogonality
relations that are known to hold for elliptic tempered characters. This will
allow us to quantify the contributions from the remaining elliptic tempered
characters, the ones attached to square integrable representations. We will
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use the information so obtained in §6.6 and §6.7. In these sections, we shall
establish Theorems 2.2.1 and 1.5.1 for the remaining “square integrable”
Langlands parameters ¢ € &)Q(G). Finally, in §6.8, we shall resolve the
various hypotheses taken on at the beginning of Chapter 6.

Chapter 7 applies to nongeneric local parameters. It contains the proof
of the local theorems in general. In §7.2, we shall use the construction of
§6.2 to embed a given nongeneric local parameter into a family of global
parameters, but with local constraints that differ slightly from those of §5.4.
We will then deduce special cases of the local theorems that apply to the
places v with local constraints. These will follow from the local theorems for
generic parameters, established in Chapter 6, and the duality operator of
Aubert and Schneider-Stuhler, which we review in §7.1. We will then exploit
our control over the places v to derive the local theorems at the localization
1 = 1, that represents the original given parameter.

We will finish the proof of the global theorems in the first two sections
of Chapter 8. Armed with the local theorems, and the resulting refinements
of the lemmas from Chapter 5, we will be able to establish almost all of the
global results in §8.1. However, there will still to be one final obstacle. It is
the case of a simple parameter v € \Tlsim(G), which among other things will
be essential for a resolution of our induction hypotheses. An examination
of this case leads us to the initial impression that it will be resistant to
all of our earlier techniques. Fortunately, with further reflection, we will
find that there is a way to treat it after all. We will introduce a second
supplementary parameter ¢, , which appears ungainly at first, but which,
with the support of two rather intricate lemmas, takes us to a successful
conclusion.

Section 8.2 is the climax of our long running induction argument, as well
as its most difficult point of application. Its final resolution is what brings
us to the end of the proof. We will then be free in §8.3 for some general
reflections that will give us some perspective on what has been established.
In §8.4, we will sharpen our results for the groups SO(2n) in which the
outer automorphism creates some ambiguity. We will use the stabilized trace
formula to construct the local and global L-packets for generic parameters
predicted for these groups by the conjectural theory of endoscopy. In §8.5, we
will describe an approximation of a part of the global Langlands group L,
which is tailored to the classical groups of this volume. It could potentially
be used in place of some of the ad hoc global parameters of §1.4 to streamline
the statements of the global theorems.

We shall discuss inner forms of orthogonal and symplectic groups in
Chapter 9. The automorphic representation theory for inner twists is in
some ways easier for knowing what happens in the case of quasisplit groups.
In particular, the stable multiplicity formula is already in place, since it
applies only to the quasisplit case. However, there are also new difficulties
for inner twists, particularly in the local case. We shall describe some of
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these in Sections 9.1-9.3. We shall then state analogues for inner twists of
the main theorems, with the understanding that their proofs will appear
elsewhere.

Having briefly summarized the various chapters, we should add some
comment on our use of induction. As we have noted, induction is a central
part of the unified argument that will carry us from Chapter 2 to Section
8.2. We will have two kinds of hypotheses, both based on the positive integer
N that indexes the underlying general linear group GL(N). The first kind
includes various ad hoc assumptions, such as those implicit in some of our
definitions. For example, the global parameter sets \TJ(G) defined in §1.4 are
based on the inductive application of two “seed” Theorems 1.4.1 and 1.4.2.
The second will be the formal induction hypotheses introduced explicitly at
the beginning of §4.3, and in more refined form at the beginning of §5.1.
They assert essentially that the stated theorems are all valid for parameters
of rank less than N. In particular, they include the informal hypotheses
implicit in the definitions.

We do not actually have to regard the earlier, informal assumptions
as inductive. They really represent implicit appeals to stated theorems,
in support of proofs of what amount to corollaries. In fact, from a logical
standpoint, it is simpler to treat them as inductive assumptions only after we
introduce the formal induction hypotheses in §4.3 and §5.1. For a little more
discussion of this point, the reader can consult the two parallel Remarks
following Corollaries 4.1.3 and 4.2.4.

The induction hypotheses of §5.1 are formulated for an abstract family
F of global parameters. They pertain to the parameters i € F of rank
less than IV, and are supplemented also by a hypothesis (Assumption 5.1.1)
for certain parameters in F of rank equal to N. The results of Chapter
5 will be applied three times, to three separate families F. These are the
family of generic parameters with local constraints used to establish the local
classification of Chapter 6, the family of nongeneric parameters with local
constraints used to deduce the local results for nontempered representations
in Chapter 7, and the family of all global parameters used to establish the
global theorems in the first two sections of Chapter 8. In each of these cases,
the assumptions have to be resolved for the given family F. In the case of
Chapter 6, the induction hypotheses are actually imposed in two stages. The
local hypothesis at the beginning of §6.3 is needed to construct the family
F , on which we then impose the global part of the general hypothesis of
Chapter 5 at the beginning of §6.4. The earlier induction hypotheses of
§4.3 apply to general global parameters of rank less than N. They are used
in §4.3-84.6 to deduce the global theorems for parameters that are highly
reducible. Their general resolution comes only after the proof of the global
theorems in §8.2.

Our induction assumptions have of course to be distinguished from the
general condition (Hypothesis 3.2.1) on which our results rely. This is the
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stabilization of the twisted trace formula for the two groups GL(N) and
SO(2n). As a part of the condition, we implicitly include twisted ana-
logues of the two local results that have a role in the stabilization of the
ordinary trace formula. These are the orthogonality relations for elliptic
tempered characters of [A10, Theorem 6.1], and the weak spectral transfer
of tempered p-adic characters given by [A11, Theorems 6.1 and 6.2]. The
stabilization of orthogonality relations in §6.5 requires twisted orthogonality
relations for GL(N), as well as those of [A10]. It will be an essential part
of the local classification in Chapter 6. The two theorems from [A11] can
be regarded as a partial generalization of the fundamental lemma for the
full spherical Hecke algebra [Hal]. (Their global proof of course depends on
the basic fundamental lemma for the unit, established by Ngo.) We will use
them in combination with their twisted analogues in the proofs of Propo-
sition 2.1.1 and Corollary 6.7.4. The first of these gives the image of the
twisted transfer of functions from GL(N), which is needed in the proof of
Proposition 3.5.1. The second gives a relation among tempered characters
that completes the local classification.

There is one other local theorem whose twisted analogues for GL(N)
and SO(2n) we shall also have to take for granted. It is Shelstad’s strong
spectral transfer of tempered archimedean characters, which is to say, her
endoscopic classification of representations of real groups. This of course
is a major result. Together with its two twisted analogues, it gives the
archimedean cases of the local classification in Theorems 2.2.1 and 2.2.4. We
shall combine it with a global argument in Chapter 6 to establish the p-adic
form of these theorems. The general twisted form of Shelstad’s endoscopic
classification appears to be within reach. It is likely to be established soon
by some extension of recent work by Mezo [Me] and Shelstad [S8].

Finally, let me include a comment on notation. Because our main theo-
rems require interlocking proofs, which consume a good part of the volume,
there is always the risk of losing one’s way. Until the end of §8.2, assertions
as Theorems are generally stated with the understanding that their proofs
will usually be taken up much later (unless of course they are simply quoted
from some other source). On the other hand, assertions denoted Proposi-
tions, Lemmas or Corollaries represent results along the route, for which the
reader can expect a timely proof. The theorems stated in §8.4 are not part
of the central induction argument. Their proofs, which are formally labeled
as such, follow relatively soon after their statements. The theorems stated
in §9.4 and §9.5 apply to inner twists. They will be proved elsewhere.

The actual mathematical notation of the volume might appear uncon-
ventional at times. I have tried to structure it so as to reflect implicit
symmetries in the various objects it represents. With luck, it might help
a reader navigate the arguments without necessarily being aware of such
symmetries.

The three main theorems of the volume were described in [A18, §30].
I gave lecture courses on them in 1994-1995 at the Institute for Advanced
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Study and the University of Paris VII, and later in 2000, again at the Insti-
tute for Advanced Study. Parts of Chapter 4 were also treated heuristically
in the earlier article [A9]. In writing this volume, I have added some top-
ics to my original notes. These include the local Langlands classification
for GL(N), the treatment of inner twists in Chapter 9 and the remarks on
Whittaker models in §8.3. I have also had to fill unforeseen gaps in the
notes. For example, I did not realize that twisted endoscopy for SO(2n)
was needed to formulate the local intertwining relation. In retrospect, it is
probably for the best that this second case of twisted endoscopy does have a
role here, since it forces us to confront a general phenomenon in a concrete
situation. I have tried to make this point explicit in §2.4 with the discussion
surrounding the short exact sequence (2.4.10). In any case, I hope that I
have accounted for most of the recent work on the subject, in the references
and the text. There will no doubt be omissions. I most regret not being
able to describe the results of Moeglin on the structure of p-adic packets
ﬁwv ([M1]-[M4]). It is clearly an important problem to establish analogues
of her results for archimedean packets.

Acknowledgments: I am greatly indebted to the referee, for a close and
careful reading of an earlier draft of the manuscript (which went to the end
of §8.2), and for many very helpful comments. I also thank Chung Pang
Mok, who read a later draft of the manuscript, and offered further helpful
suggestions.
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the three exceptional cases, 333
Tits indices, 515, 517
transfer factor

global, 131

local, 52
twisted cuspidal function, 317
twisted endoscopic group, 11

unnormalized intertwining operator, 82
unramified group, 53

virtual character, 430

weighted fundamental lemma, 135
Weil group, 3

Weyl character formula, 477
Whittaker datum, 55

Whittaker functional, 62, 110
Whittaker integral, 111
Whittaker model, 110

(z/27)-symmetry, 482, 502
z-embedding, 542
z-extension, 542
Zelevinsky conjecture, 390



Within the Langlands program, endoscopy is a fundamental
process for relating automorphic representations of one group
with those of another. In this book, Arthur establishes an
endoscopic classification of automorphic representations of
orthogonal and symplectic groups G. The representations are
shown to occur in families (known as global L-packets and
A-packets), which are parametrized by certain self-dual auto-
morphic representations of an associated general linear group
GL(N). The central result is a simple and explicit formula for
the multiplicity in the automorphic discrete spectrum of G for
any representation in a family.

The results of the volume have already had significant applications: to the local
Langlands correspondence, the construction of unitary representations, the existence
of Whittaker models, the analytic behaviour of Langlands L-functions, the spectral
theory of certain locally symmetric spaces, and to new phenomena for symplectic
epsilon-factors. One can expect many more. In fact, it is likely that both the results
and the techniques of the volume will have applications to almost all sides of the
Langlands program.

The methods are by comparison of the trace formula of G with its stabilization (and
a comparison of the twisted trace formula of GL(N) with its stabilization, which

is part of work in progress by Moeglin and Waldspurger). This approach is quite
different from methods that are based on L-functions, converse theorems, or the
theta correspondence. The comparison of trace formulas in the volume ought to be
applicable to a much larger class of groups. Any extension at all will have further
important implications for the Langlands program.
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