Lusternik-Schnirelmann Category and Related Topics

2001 AMS-IMS-SIAM Joint Summer Research Conference on Lusternik-Schnirelmann Category in the New Millennium
July 29–August 2, 2001
Mount Holyoke College, South Hadley, Massachusetts

O. Cornea
G. Lupton
J. Oprea
D. Tanré
Editors

American Mathematical Society
Lusternik-Schnirelmann Category and Related Topics
Lusternik-Schnirelmann Category and Related Topics

2001 AMS-IMS-SIAM Joint Summer Research Conference on Lusternik-Schnirelmann Category in the New Millennium
July 29–August 2, 2001
Mount Holyoke College, South Hadley, Massachusetts

O. Cornea
G. Lupton
J. Oprea
D. Tanré
Editors

American Mathematical Society
Providence, Rhode Island
The 2001 AMS-IMS-SIAM Joint Summer Research Conference on "Lusternik-Schnirelmann Category in the New Millennium" was held at Mount Holyoke College, South Hadley, Massachusetts, July 29–August 2, 2001, with support from the National Science Foundation, grant DMS 9973450.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Contents

Preface vii

Invited Survey Article
Lusternik-Schnirelmann Category in Homotopy Theory
PETER HILTON 1

Contributed Articles
The A-category and A-cone length of a map
MARTIN ARKOWITZ, DONALD STANLEY, AND JEFFREY STROM 15

Equivariant LS-category for finite group actions
HELEN COLMAN 35

Tangential LS category and cohomology for foliations
HELEN COLMAN AND STEVEN HURDER 41

Spaces in the Mislin genus of a finite, simply connected co-H0-space
M. CRISTINA COSTOYA-RAMOS 65

Approximations to the \(\mathcal{F} \)-killing length of a space
M. CUVILLIEZ AND Y. FÉLIX 73

Pseudo-comultiplications, their Hopf-type invariant and Lusternik-
Schnirelmann category of conic spaces
GIORA DULA 79

Lusternik-Schnirelman theory and dynamics
MICHAEL FARBER 95

The Lusternik-Schnirelmann theorem for the ball category
CAIUS GAVRILA 113

The Lusternik-Schnirelmann category of spaces in the Mislin genus of \(Sp(3) \)
PIERRE GHIENNE 121

A \(p \)-complete version of the Ganea conjecture for co-H-spaces
J. R. HUBBUCK AND NORIO IWASE 127

The rational Toomer invariant and certain elliptic spaces
GREGORY LUPTON 135
On the Hopf invariant of the Hopf construction
HOWARD J. MARCUM .. 147

Bochner-type theorems for the Gottlieb group and injective toral actions
JOHN OPREA .. 175

Detecting elements and Lusternik-Schnirelmann category of 3-manifolds
JOHN OPREA AND YULI RUDYAK 181

Generalizations of category weight
JEFFREY STROM .. 193
Preface

This collection of articles is the proceedings volume for the American Mathematical Society’s Summer Research Conference, *Lusternik-Schnirelmann Category in the New Millennium*, held 29th July–2nd August 2001 on the campus of Mount Holyoke College in Massachusetts. The conference, one of seven joint AMS-IMS-SIAM summer research conferences in the mathematical sciences held that summer, attracted an international group of 37 participants that included many of the leading practitioners in the field.

Lusternik-Schnirelmann category (LS-category) is an integer that can be associated to a topological space. It is an invariant of the homotopy type of the space that gives a numerical measure of the complexity of the space. In particular, it indicates the complexity of possible dynamics on a smooth manifold, by providing a lower bound on the number of critical points of any smooth function on the manifold. The survey article by Hilton in this volume recalls the basic definitions and those results that first brought category to the attention of topologists.

While LS-category is classical in origin, the subject has recently enjoyed a renaissance. The latest developments include work in the areas of homotopy theory, dynamical systems, and symplectic topology. One interesting aspect of this recent activity is the way in which it has made significant links connecting these areas.

Many of the new developments have occurred in the homotopy-theoretic branch of the subject. The composition of the articles in this volume reflects this fact. Of the fifteen contributed articles, nine are primarily homotopy-theoretic. The survey article by Hilton gives a resume of those homotopy-theoretic results known before the surge of recent activity. While several of the contributed articles continue in this classical vein, practically all of them are influenced in one way or another by more recent ideas. Certainly all of them represent non-classical points of view on LS-category.

Broadly speaking, the main forces responsible for spurring new interest in LS-category among homotopy theorists have been developments concerning the Ganea conjecture (that $\text{cat}(X \times S^n) = \text{cat}(X) + 1$) on the one hand and rational homotopy theory on the other. Concerning the Ganea conjecture, there are two ideas that have played a particularly central role in this work. One is the notion of category weight and the other is the notion of Hopf invariant, in both a classical and an extended sense. The articles of Strom and Oprea-Rudyak are concerned with category weight, those of Dula and Marcum with Hopf invariants. The articles by Cuvilliez-Félix and Lupton are concerned with rational homotopy theory proper, and those of Costoya-Ramos, Ghienne, and Hubbuck-Iwase with more general localization and completion. Finally, among the primarily homotopy-theoretic articles, those of Arkowitz-Stanley-Strom, Marcum, and Strom...
are concerned with extensions to a categorical setting of the notions of LS-category, Hopf invariants, and category weight, respectively.

In addition to these primarily homotopy-theoretic articles, three more give applications to other fields from a homotopy point of view. The articles of Colman, Oprea, and Oprea-Rudyak give applications to finite group actions, torus actions and 3-manifolds, respectively.

We have mentioned that Hopf invariants have played a major role in recent homotopy-theoretic developments. Somewhat surprisingly perhaps, these have been connected with dynamical systems as well. Indeed, there is a whole branch consisting of a homotopical approach to dynamics, essentially developing from Morse theory and the work of Conley. This work linking the homotopical development of LS-category to dynamics has also spilled over into the world of symplectic topology, where category and related invariants have proved to be useful tools in investigating subjects such as Hamiltonian circle actions and the Arnold conjecture (for fixed points and Lagrangian intersections). The dynamical viewpoint is represented in this volume by the article of Farber. Several of the references in his article give a starting point from which to delve into this branch. Also in the area of dynamical systems, but in a decidedly more classical vein, the article by Gavrila gives a version of the original Lusternik-Schnirelmann theorem for a closely-related invariant.

Finally, the article by Colman-Hurder represents an area in which ideas connected with LS-category have only recently been recognized as important, namely foliations. The references in that article provide many sources for this promising area of development. The article, and indeed the appearance of LS-category in foliations, illustrates very well the kind of cross-fertilization that we hoped to foster at the conference.

One word about notation: The original definition of LS-category, as given in the article of Hilton, would yield the LS-category of a sphere as 2. In homotopy theory, however, it is usual to adjust the definition by 1 in such a way that the sphere has LS-category equal to 1. The articles by Hilton, Colman, Colman-Hurder, Farber, and Gavrila adopt the former convention, while all the other articles in this volume adopt the latter.

We would like to thank the AMS on several counts. First, we must thank it in a global way for its financial support of the Summer Research Conferences. In a local way, we thank it for its financial and administrative support for our conference. In particular, our on-site administrative staff person was Donna Salter, and it can safely be ventured that the success of the conference was due in large measure to her organizational skills. Subsequently, the AMS publications department has been very encouraging and supportive throughout the preparation of this volume. We would like especially to thank Christine Thivierge for her guidance at each stage.
Titles in This Series

316 O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Editors, Lusternik-Schnirelmann category and related topics, 2002

315 Theodore Voronov, Editor, Quantization, Poisson brackets and beyond, 2002

314 A. J. Berrick, Man Chun Leung, and Xingwang Xu, Editors, Topology and Geometry: Commemorating SISTAG, 2002

313 M. Zuhair Nashed and Otmar Scherzer, Editors, Inverse problems, image analysis, and medical imaging, 2002

312 Aaron Bertram, James A. Carlson, and Holger Kley, Editors, Symposium in honor of C. H. Clemens, 2002

311 Clifford J. Earle, William J. Harvey, and Sevín Recillas-Pishmish, Editors, Complex manifolds and hyperbolic geometry, 2002

310 Alejandro Adem, Jack Morava, and Yongbin Ruan, Editors, Orbifolds in mathematics and physics, 2002

309 Martin Guest, Reiko Miyaoka, and Yoshihiro Ohnita, Editors, Integrable systems, topology, and physics, 2002

308 Martin Guest, Reiko Miyaoka, and Yoshihiro Ohnita, Editors, Differentiable geometry and integrable systems, 2002

307 Ricardo Weder, Pavel Exner, and Benoit Grébert, Editors, Mathematical results in quantum mechanics, 2002

306 Xiaobing Feng and Tim P. Schulze, Editors, Recent advances in numerical methods for partial differential equations and applications, 2002

305 Samuel J. Lomonaco, Jr. and Howard E. Brandt, Editors, Quantum computation and information, 2002

304 Jorge Alberto Calvo, Kenneth C. Millett, and Eric J. Rawdon, Editors, Physical knots: Knotting, linking, and folding geometric objects in \mathbb{R}^3, 2002

303 William Cherry and Chung-Chun Yang, Editors, Value distribution theory and complex dynamics, 2002

302 Yi Zhang, Editor, Logic and algebra, 2002

301 Jerry Bona, Roy Choudhury, and David Kaup, Editors, The legacy of the inverse scattering transform in applied mathematics, 2002

300 Sergei Vostokov and Yuri Zarhin, Editors, Algebraic number theory and algebraic geometry: Papers dedicated to A. N. Parshin on the occasion of his sixtieth birthday, 2002

299 George Kamberov, Peter Norman, Franz Pedit, and Ulrich Pinkall, Quaternions, spinors, and surfaces, 2002

298 Robert Gilman, Alexei G. Myasnikov, and Vladimir Shpilrain, Editors, Computational and statistical group theory, 2002

297 Stephen Berman, Paul Fendley, Yi-Zhi Huang, Kailash Misra, and Brian Parshall, Editors, Recent developments in infinite-dimensional Lie algebras and conformal field theory, 2002

296 Sean Cleary, Robert Gilman, Alexei G. Myasnikov, and Vladimir Shpilrain, Editors, Combinatorial and geometric group theory, 2002

295 Zhangxin Chen and Richard E. Ewing, Editors, Fluid flow and transport in porous media: Mathematical and numerical treatment, 2002

294 Robert Coquereaux, Ariel García, and Roberto Trinchero, Editors, Quantum symmetries in theoretical physics and mathematics, 2002

293 Donald M. Davis, Jack Morava, Goro Nishida, W. Stephen Wilson, and Nobuaki Yagita, Editors, Recent progress in homotopy theory, 2002

292 A. Chenciner, R. Cushman, C. Robinson, and Z. Xia, Editors, Celestial Mechanics, 2002
291 Bruce C. Berndt and Ken Ono, Editors, \textit{q}-series with applications to combinatorics, number theory, and physics, 2001

290 Michel L. Lapidus and Machiel van Frankhuysen, Editors, Dynamical, spectral, and arithmetic zeta functions, 2001

289 Salvador Pérez-Esteva and Carlos Villegas-Blas, Editors, Second summer school in analysis and mathematical physics: Topics in analysis: Harmonic, complex, nonlinear and quantization, 2001

287 Marlos A. G. Viana and Donald St. P. Richards, Editors, Algebraic methods in statistics and probability, 2001

284 Gaston M. N’Guérékata and Asamoah Nkwanta, Editors, Council for African American researchers in the mathematical sciences: Volume IV, 2001

283 Paul A. Milewski, Leslie M. Smith, Fabian Waleffe, and Esteban G. Tabak, Editors, Advances in wave interaction and turbulence, 2001

282 Arlan Ramsay and Jean Renault, Editors, Groupoids in analysis, geometry, and physics, 2001

281 Vadim Olshevsky, Editor, Structured matrices in mathematics, computer science, and engineering II, 2001

280 Vadim Olshevsky, Editor, Structured matrices in mathematics, computer science, and engineering I, 2001

278 Eric Todd Quinto, Leon Ehrenpreis, Adel Faridani, Fulton Gonzalez, and Eric Grinberg, Editors, Radon transforms and tomography, 2001

277 Luca Capogna and Loredana Lanzani, Editors, Harmonic analysis and boundary value problems, 2001

276 Emma Previato, Editor, Advances in algebraic geometry motivated by physics, 2001

274 Ken-ichi Maruyama and John W. Rutter, Editors, Groups of homotopy self-equivalences and related topics, 2001

272 Eva Bayer-Fluckiger, David Lewis, and Andrew Ranicki, Editors, Quadratic forms and their applications, 2000

271 J. P. C. Greenlees, Robert R. Bruner, and Nicholas Kuhn, Editors, Homotopy methods in algebraic topology, 2001

270 Jan Denef, Leonard Lipschitz, Thanases Pheidas, and Jan Van Geel, Editors, Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, 2000

269 Mikhail Lyubich, John W. Milnor, and Yair N. Minsky, Editors, Laminations and foliations in dynamics, geometry and topology, 2001

For a complete list of titles in this series, visit the AMS Bookstore at \url{www.ams.org/bookstore/}.
This collection is the proceedings volume for the American Mathematical Society's Summer Research Conference, Lusternik-Schnirelmann Category, held in 2001 at Mount Holyoke College in Massachusetts. The conference and its contributions here represent an international group of the leading practitioners in the field.

With a surge of recent activity, exciting advances have been made in this field, including the resolution of several long-standing conjectures. Lusternik-Schnirelmann category is a numerical homotopy invariant that also provides a lower bound for the number of critical points of a smooth function on a manifold. The study of this invariant, together with related notions, forms a subject lying on the boundary between homotopy theory and critical point theory.

These articles cover a wide range of topics for research mathematicians and graduate students. Some focus on concrete computations and applications while others look at more abstract extensions of the fundamental ideas.