Hodge Theory,
Complex Geometry,
and Representation Theory

NSF-CBMS Regional Conference in Mathematics
Hodge Theory, Complex Geometry,
and Representation Theory
Texas Christian University, Fort Worth, Texas
June 18, 2012

Robert S. Doran
Greg Friedman
Scott Nollet
Editors
Hodge Theory,
Complex Geometry,
and Representation Theory
Hodge Theory, Complex Geometry, and Representation Theory

NSF-CBMS Regional Conference in Mathematics
Hodge Theory, Complex Geometry, and Representation Theory
Texas Christian University, Fort Worth, Texas
June 18, 2012

Robert S. Doran
Greg Friedman
Scott Nollet
Editors
This volume is dedicated to Phillip A. Griffiths.
Contents

Preface ix
Conference Attendees xiii
Conference Speakers xv

The smooth center of the cohomology of a singular variety
DONU ARAPURA, XI CHEN, AND SU-JEONG KANG 1

Developments in Noether-Lefschetz theory
JOHN BREVIK AND SCOTT NOLLET 21

Compact quotients of non-classical domains are not Kähler
JAMES A. CARLSON AND DOMINGO TOLEDO 51

Algebraicity of Hodge loci for variations of Hodge structure
EDUARDO CATTANI AND AROルドO KAPLAN 59

On the differential equations satisfied by certain Harish-Chandra modules
MARK GREEN AND PHILLIP GRIFFITHS 85

Kato-Usui partial compactifications over the toroidal compactifications of
Siegel spaces
TATSUKI HAYAMA 143

On the equivalence problem for bracket-generating distributions
AROLDO KAPLAN AND MAURO SUBILS 157

Notes on the representation theory of $SL_2(\mathbb{R})$
MATT KERR 173

Cup products in automorphic cohomology: The case of Sp_4
MATT KERR 199

Hodge type conjectures and the Bloch-Kato theorem
JAMES D. LEWIS 235

Principal Hodge representations
COLLEEN ROBLES 259

A study of mirror symmetry through log mixed Hodge theory
SAMPEI USUI 285
Preface

Professor Phillip Griffiths is a giant in complex geometry. He is best known for his use of transcendental methods in algebraic and differential geometry, and his many awards include the 1971 LeRoy P. Steele Prize for his fundamental work on period domains of abelian integrals and the 2008 Wolf Foundation Prize for his work on variations of Hodge structures. He has held various positions at Berkeley, Princeton, Harvard, and Duke and has been at the Institute for Advanced Study in Princeton since 1991, where he served as director from 1991 to 2003.

On June 18, 2012, Professor Griffiths was the plenary speaker at a Conference Board of the Mathematical Sciences (CBMS) conference hosted at Texas Christian University in Fort Worth, where he gave a series of 10 lectures on the topic “Hodge Theory, Complex Geometry, and Representation Theory”. In these lectures, Prof. Griffiths first explained now-classical work concerning how the structure of Shimura varieties as quotients of Mumford-Tate domains by arithmetic groups had been used to understand the relationship between Galois representations and automorphic forms; he then discussed how, due to a recent breakthrough of Carayol and a better understanding of cycle spaces, Penrose transforms, and Mumford-Tate domains, there is now the possibility of extending these results beyond the classical case. Despite the complexity of this topic, which occurs at the confluence of several major research areas in mathematics, the lectures were solidly grounded in key examples in order to make them accessible to a broad audience.

Prof. Griffiths’s conference lectures will be published as an independent book in the Conference Board of the Mathematical Sciences series of the American Mathematical Society. The papers contained in the present volume were contributed by other conference participants and include a balance between expository and research works, the topics all being heavily influenced by the work of Griffiths. The subjects of the expository papers include Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of $SL_2(\mathbb{R})$. The research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of \mathbb{Q}-algebraic groups, and the compactifications, distributions, and quotients of period domains.

The editors of this volume, who were also the conference organizers, wish to extend their deep gratitude to the National Science Foundation and the Conference Board of the Mathematical Sciences for making the conference possible via NSF grant DMS-1137952. We thank all of the participants who made for a lively week, and we especially thank those who contributed to this proceedings volume. We also acknowledge the hard work and help of the referees. Foremost, we thank Phillip Griffiths, whose work has served as an inspiration for all that can be found in these pages. Finally, we wish to thank Sergei Gelfand, Christine Thivierge, and the
dedicated staff of the American Mathematical Society for their efforts in publishing these proceedings.

Robert S. Doran
Greg B. Friedman
Scott R. Nollet

1The second-named editor was partially supported by a grant from the Simons Foundation (#209127 to Greg Friedman)

Not pictured: Jim Carlson, E. Javier Elizondo, Wushi Goldring, Loren Spice, Qiao Zhang
Conference Attendees

James Carlson
University of Utah

Eduardo Cattani
University of Massachusetts, Amherst

Xi Chen
University of Alberta

Jeremy Daniel
Université Paris Diderot

Bruce Doran
Accenture LLP

Robert Doran
Texas Christian University

Ze-li Dou
Texas Christian University

E. Javier Elizondo
Instituto de Matematicas, UNAM

Greg Friedman
Texas Christian University

Wushi Goldring
University of Paris 13

Mark Green
University of California, Los Angeles

Phillip Griffiths
IAS

Tatsuki Hayama
National Taiwan University

Chen He
Northeastern University

Jose Jaime Hernandez Castillo
UANL

Su-Jeong Kang
Providence College

Ardolo Kaplan
CONICET, Argentina

Ryan Keast
Washington University

Tyler Kelly
University of Pennsylvania

Matt Kerr
Washington University

Amanda Knecht
Villanova University

Ian Le
Northwestern University

James Lewis
University of Alberta

Zhiyuan Li
Rice University

Evgeny Mayanskiy
Pennsylvania State University

Zhao Hu Nie
Utah State University

Scott Nollet
Texas Christian University

Gregory Pearlstein
Michigan State University

Colleen Robles
Texas A&M University

Loren Spice
Texas Christian University
Zhiyu Tian
Caltech

Domingo Toledo
University of Utah

Sampei Usui
Osaka University

Jie Xia
Columbia University

Ke Xue
University of Maryland, College Park

Sen Yang
Louisiana State University

Yanhong Yang
Columbia University

Qiao Zhang
Texas Christian University

Zheng Zhang
Stony Brook University

Xiaolei Zhao
University of Michigan

Runpu Zong
Princeton University
Conference Speakers

Phillip Griffiths
Hodge Theory, Complex Geometry, and Representation Theory

James Carlson
Transcendence degree of the field of periods

Eduardo Cattani
Asymptotics of the Period Map

Wushi Goldring
Algebraicity of Automorphic Representations

Mark Green
Review of Real and Complex Compact and Semisimple Lie Groups and Finite Dimensional Representation Theory

Aroldo Kaplan
Topics from Griffiths’s Lecture 3

Matt Kerr
Representations of SL_2, parts I and II

James Lewis
Hodge Type Conjectures and the Bloch-Kato Theorem

Gregory Pearlstein
Boundary components of Mumford-Tate domains

Colleen Robles
Schubert integrals and invariant characteristic cohomology of the infinitesimal period relation

Domingo Toledo
Period Domains and Kähler Manifolds

Sampei Usui
Log Mixed Hodge Theory
This volume contains the proceedings of an NSF/Conference Board of the Mathematical Sciences (CBMS) regional conference on Hodge theory, complex geometry, and representation theory, held on June 18, 2012, at the Texas Christian University in Fort Worth, TX. Phillip Griffiths, of the Institute for Advanced Study, gave 10 lectures describing now-classical work concerning how the structure of Shimura varieties as quotients of Mumford-Tate domains by arithmetic groups had been used to understand the relationship between Galois representations and automorphic forms. He then discussed recent breakthroughs of Carayol that provide the possibility of extending these results beyond the classical case. His lectures will appear as an independent volume in the CBMS series published by the AMS.

This volume, which is dedicated to Phillip Griffiths, contains carefully written expository and research articles. Expository papers include discussions of Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of $SL_2(\mathbb{R})$. Research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of \mathbb{Q}-algebraic groups, and compactifications, distributions, and quotients of period domains. It is expected that the book will be of interest primarily to research mathematicians, physicists, and upper-level graduate students.