Spectral Theory and Applications

CRM Summer School
Spectral Theory and Applications
July 4–14, 2016
Université Laval, Québec, Canada

Alexandre Girouard
Editor
Spectral Theory and Applications
Spectral Theory and Applications

CRM Summer School
Spectral Theory and Applications
July 4–14, 2016
Université Laval, Québec, Canada

Alexandre Girouard
Editor
Contents

Preface vii

Fundamentals of spectral theory
 THOMAS RANSFORD 1

Spectral theory of partial differential equations
 RICHARD S. LAUGESEN 23

From classical mechanics to quantum mechanics
 RICHARD FROESE 57

Numerical methods for spectral theory
 FELIX KWOK 101

Spectral geometry
 YAIZA CANZANI 153

Quantum graphs via exercises
 RAM BAND and **SVEN GNUTZMANN** 187

Spectral properties of classical integral operators and geometry
 DMITRY KHAVINSON 205
Preface

The 2016 CRM Summer School in Québec City took place at Université Laval from July 4–14. The topic of the meeting was Spectral Theory and Applications. The event was sponsored by the Centre de Recherches Mathématiques (CRM), Institut des Sciences Mathématiques (ISM), the National Science Fondation (NSF), Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), and Université Laval.

The summer school brought together students and internationally renowned experts from several subfields of spectral theory. The program consisted of six minicourses introducing fundamentals of spectral theory, applications to physics and partial differential equations, as well as spectral geometry and numerical methods. The minicourses were complemented by exercise sessions and computer labs. There were also some shorter presentations touching upon various related research topics, including classical integral operators, network analysis, and random matrices. The school featured about 50 participants from 12 different countries. These lectures should be useful to graduate as well as advanced undergraduate students.

The lecture notes by Thomas Ransford (Université Laval) cover the fundamentals of spectral theory in Hilbert spaces, up to the spectral theorem for compact self-adjoint operators. Applications to Sturm–Liouville differential equations are also presented. The presentation is streamlined and will appeal to any student who wants to quickly learn the most useful and concrete aspects of spectral theory on Hilbert spaces.

The lecture notes by Richard Laugesen (University of Illinois at Urbana-Champaign) focus on spectral theory of partial differential operators. The emphasis is on basic examples, such as the Laplace operator on bounded Euclidean domains. It starts from separation of variables for the Dirichlet and Neumann Laplacians and builds up to a proof of the spectral theorem for these operators, using weak solutions and quadratic forms on Hilbert spaces. The variational characterization of eigenvalues is then presented, with several applications, such as the monotonicity of Dirichlet eigenvalues under inclusion. Applications to the stability of reaction-diffusion equations are also discussed.

The lectures by Richard Froese (University of British Columbia) provide a mathematical background on classical and quantum mechanics. A novel aspect of the lectures is the continual blend and comparison of ideas from classical and quantum mechanics. An introduction to Lagrangian submanifolds and Legendre transforms is included, and the Hamilton–Jacobi equation is used to construct solutions to the Schrödinger equation. Hidden variables are discussed as a means to illustrate the essential strangeness of the quantum description of nature. This is an area that is neither easy to access nor widely known.
The lectures by Felix Kwok (Hong Kong Baptist University) introduce numerical methods for approximating the eigenvalues and eigenfunctions of partial differential operators. Finite difference methods are first presented, followed by finite element methods. Applications to vibrating plates and their nodal patterns are presented.

The lectures by Yaiza Canzani (University of North Carolina at Chapel Hill) give an overview of spectral geometry on Riemannian manifolds and start with an informal discussion on the ubiquity and importance of the Laplacian. This serves as a road map to the lectures, which cover isospectrality, spectral asymptotics, and heat equation methods. A review of basic Riemannian geometry is included.

The paper by Ram Band (Technion) and Sven Gnutzmann (University of Nottingham) teaches basic quantum graph theory through a well-chosen set of exercises. It covers various vertex conditions, the secular function, and scattering, as well as a trace formula related to periodic orbits.

The paper by Dmitry Khavinson (University of South Florida) presents several open problems in the study of spectral and geometric properties of classical integral operators, such as the Cauchy operator, and single and double layer potentials.

The proceedings of the 2016 CRM Summer School in Québec City on Spectral Theory and its Applications cover a large variety of topics and methods, combining geometric, analytic, and numerical ideas. We hope that this volume will serve as a reference for young mathematicians who are eager to learn the basics of this fascinating area of mathematics.

The editor would like to express his gratitude to all the contributing authors, as well as to all the speakers at the summer school.
Selected Published Titles in This Series

720 Alexandre Girouard, Editor, Spectral Theory and Applications, 2018
716 Alex Martenskovsky, Kiyoshi Igusa, and Gordana Todorov, Editors, Surveys in Representation Theory of Algebras, 2018
715 Sergio R. López-Permouth, Jae Keol Park, S. Tariq Rizvi, and Cosmin S. Roman, Editors, Advances in Rings and Modules, 2018
714 Jens Gerlach Christensen, Susanna Dann, and Matthew Dawson, Editors, Representation Theory and Harmonic Analysis on Symmetric Spaces, 2018
713 Naihuan Jing and Kailash C. Misra, Editors, Representations of Lie Algebras, Quantum Groups and Related Topics, 2018
712 Nero Budur, Tommaso de Fernex, Roi Docampo, and Kevin Tucker, Editors, Local and Global Methods in Algebraic Geometry, 2018
711 Thomas Creutzig and Andrew R. Linshaw, Editors, Vertex Algebras and Geometry, 2018
710 Raphaël Danchin, Reinhard Farwig, Jiří Neustupa, and Patrick Penel, Editors, Mathematical Analysis in Fluid Mechanics, 2018
709 Fernando Galaz-García, Juan Carlos Pardo Millán, and Pedro Solárzano, Editors, Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics, 2018
708 Christian Ausoni, Kathryn Hess, Brenda Johnson, Ieke Moerdijk, and Jérôme Scherer, Editors, An Alpine Bouquet of Algebraic Topology, 2018
707 Nitya Kitchloo, Mona Merling, Jack Morava, Emily Riehl, and W. Stephen Wilson, Editors, New Directions in Homotopy Theory, 2018
706 Yeonhyang Kim, Sivaram K. Narayan, Gabriel Pichorogna, and Eric S. Weber, Editors, Frames and Harmonic Analysis, 2018
705 Graham J. Leuschke, Frauke Bleher, Ralf Schiffler, and Dan Zacharia, Editors, Representations of Algebras, 2018
704 Alain Escassut, Cristina Perez-Garcia, and Khodr Shamseddine, Editors, Advances in Ultrametric Analysis, 2018
703 Andreas Malmendier and Tony Shaska, Editors, Higher Genus Curves in Mathematical Physics and Arithmetic Geometry, 2018
702 Mark Grant, Gregory Lupton, and Lucile Vandembroucq, Editors, Topological Complexity and Related Topics, 2018
701 Joan-Carles Lario and V. Kumar Murty, Editors, Number Theory Related to Modular Curves, 2018
700 Alexandre Girouard, Dmitry Jakobson, Michael Levitin, Nilima Nigam, Iosif Polterovich, and Frédéric Rochon, Editors, Geometric and Computational Spectral Theory, 2017
699 Mark L. Agranovsky, Matania Ben-Artzi, Catherine Bénéteau, Lavi Karp, Dmitry Khavinson, Simeon Reich, David Shoikhet, Gilbert Weinstein, and Lawrence Zalcman, Editors, Complex Analysis and Dynamical Systems VII, 2017
698 Alexander M. Blokh, Leonid A. Bunimovich, Paul H. Jung, Lex G. Oversteegen, and Yakov G. Sinai, Editors, Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov, 2017
697 Fabrizio Broglio, Françoise Delon, Max Dickmann, Danielle Gondard-Cozette, and Victoria Ann Powers, Editors, Ordered Algebraic Structures and Related Topics, 2017
696 Ara S. Basmajian, Yair N. Minsky, and Alan W. Reid, Editors, In the Tradition of Ahlfors–Bers, VII, 2017

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/conmseries/.
This book is a collection of lecture notes and survey papers based on the minicourses given by leading experts at the 2016 CRM Summer School on Spectral Theory and Applications, held from July 4–14, 2016, at Université Laval, Québec City, Québec, Canada.

The papers contained in the volume cover a broad variety of topics in spectral theory, starting from the fundamentals and highlighting its connections to PDEs, geometry, physics, and numerical analysis.