Nonassociative Mathematics and its Applications

Fourth Mile High Conference on Nonassociative Mathematics
July 29 - August 5, 2017
University of Denver, Denver, Colorado

Petr Vojtěchovský
Murray R. Bremner
J. Scott Carter
Anthony B. Evans
John Huerta
Michael K. Kinyon
G. Eric Moorhouse
Jonathan D. H. Smith
Editors
Nonassociative Mathematics and its Applications
Nonassociative Mathematics and its Applications

Fourth Mile High Conference on Nonassociative Mathematics
July 29 - August 5, 2017
University of Denver, Denver, Colorado

Petr Vojtěchovský
Murray R. Bremner
J. Scott Carter
Anthony B. Evans
John Huerta
Michael K. Kinyon
G. Eric Moorhouse
Jonathan D. H. Smith
Editors
Contents

The mile high magic pyramid
A. Anastasiou, L. Borsten, M. J. Duff, A. Marrani, S. Nagy, and M. Zoccali

Symmetrization of Jordan dialgebras
Murray R. Bremner

A prismatic classifying space
J. Scott Carter, Victoria Lebed, and Seung Yeop Yang

Some aspects of the SD-world
Patrick Dehornoy

About Laver tables
Ales Drapal

Leibniz algebras as non-associative algebras
Jorg Feldvoss

Simple right conjugacy closed loops
Mark Greer

Orthogonality of approximate Latin squares and quasigroups
Bokhee Im and Jonathan D. H. Smith

On the rack homology of graphic quandles
Sujoy Mukherjee and Jozef H. Przytycki

Modules over semisymmetric quasigroups
Alex Nowak

Moufang and commutant elements in magmas
J. D. Phillips

The multiplicative loops of Jha-Johnson semifields
S. Pumplun

Convex sets and barycentric algebras
Anna Romanowska

Enumeration of involutory latin quandles, Bruck loops and commutative automorphic loops of odd prime power order
Izabella Stuhl and Petr Vojtechovsky

The magic star of exceptional periodicity
Piero Truini, Michael Rios, and Alessio Marrani
Introduction

This volume consists of the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics that took place at the University of Denver, Denver, Colorado, July 29–August 5, 2017. The Mile High Conferences cover all aspects of nonassociative mathematics, including quasigroups, loops, latin squares, Lie algebras, Jordan algebras, octonions, quandles, and their applications.

Nonassociative mathematics is concerned with operations that violate the associative law \(x(yz) = (xy)z \). Given that two out of the four basic arithmetical operations are not associative, nonassociative mathematics is of ancient origin, but as a research discipline it is relatively recent. Latin squares can be traced back to Euler, octonions were constructed by Graves in 1843 just two years after Hamilton discovered quaternions, and Lie algebras appeared during the 1870s. Self-distributivity is present already in Artin’s 1925 work on braid groups and in Burstin and Mayer’s 1929 paper on distributive quasigroups. Jordan algebras were introduced in 1933, and Moufang proved her eponymous theorem in 1935 as an analog of Artin’s theorem on two-generated subalgebras of alternative algebras. The theory of quasigroups and loops then developed rapidly, first from a geometric point of view in the late 1930s in the works of Bol and then algebraically around 1943 at Albert’s Chicago school, with subsequent major contributions by Belousov and Bruck. Toward mathematical physics, the Freudenthal-Tits magic square emerged in 1950s and 1960s as an organizing principle for exceptional Lie algebras and Lie groups, while the Yang-Baxter equation was formulated in 1968. Leibniz algebras, a generalization of Lie algebras, were introduced by Bloh in 1965 and systematically investigated by Loday in 1993. Finally, Joyce and Matveev independently developed the theory of quandles in connection with knot invariants in the early 1980s.

While it is impossible to give justice to the modern developments in nonassociative mathematics in the space of this introduction—and we will therefore not try—one can point out three approaches that are responsible for many recent results and that can also be discerned in this volume.

The first approach is based on careful analysis of standard proofs of classical results and techniques in the associative setting. In rare situations, it can be observed that the classical argument does not require the full force of associativity and that the corresponding result can therefore be extended to areas not previously considered. Much more common, however, is the scenario when associativity is substantially present not only in the proofs but also in the encountered concepts. For a given concept, it is then advisable to develop and study several generalizations that coincide under the assumption of associativity. The resulting theories can be seen
as refinements of the original ideas, and they tend to be well-behaved and more profound than other somewhat arbitrary generalizations.

The second approach is to translate a problem about nonassociative structures into an equivalent, albeit quite technical, problem based on associative algebras or on objects familiar from the associative world, such as permutations or matrices. The resulting problem is rarely straightforward, but at least many tools and deep results become available to the investigator. (To illustrate, the only known proof of Lagrange’s theorem for Moufang loops is based on the study of groups with triality that requires the classification of finite simple groups.)

The third approach is to employ extensive computations, both numerical and symbolic. Linear algebra and Gröbner bases are often used to classify “small” nonassociative structures that hint at larger theories. Specialized computational packages exist as add-ons to standard algebra systems to aid in calculations with quandles, quasigroups, alternative algebras, and so on, where hand calculations are extremely impractical. Finally, automated deduction and finite model builders are used prominently, perhaps more than in any other branch of mathematics, to gain insight into previously inaccessible theories and to speed up the cycle “example → conjecture → theorem”.

We present these proceedings as a small but representative selection of active areas of investigation in nonassociative mathematics as well as a sampling of applications to set theory, low-dimensional topology, and supergravity. Several papers are of a survey character and are therefore suitable as introductions to their respective subjects.

We thank the National Science Foundation and the Associate Provost for Research and the Dean of the Division of Natural Sciences and Mathematics at the University of Denver as well as the Gudder Trust for their ongoing financial support of the Mile High Conferences. We also thank local organizers Ryan DeMuse, Wesley Fussner, Hwajin Park, and Seung Yeop Yang for their help with the conference and Christine Thivierge at the American Mathematical Society for her assistance with the preparation of this volume.

The guest editorial board
Denver, Colorado
May 14, 2018
List of Participants

Tathagata Basak
Iowa State University
Marco Bonatto
Charles University
Scott Carter
University of South Alabama
Micah Chrisman
Monmouth University
Alissa Crans
Loyola Marymount University
Piroska Csörgő
Eszterházy Károly University
Patrick Dehornoy
University of Caen
Ryan DeMuse
University of Denver
Vladimir Dotsenko
Trinity College Dublin
Aleš Drápal
Charles University
Michael Duff
Imperial College London and University of Oxford
Clifton Ealy
Western Michigan University
Anthony Evans
Wright State University
Jörg Feldvoss
University of South Alabama
Iryna Fryz
Khmelnitskiy National University
Wesley Fussner
University of Denver
Mark Greer
University of North Alabama
John Huerta
University of Lisbon
Bokhee Im
Chonnam National University
Abednego Isere
Ambrose Alli University
Přemysl Jedlička
Czech University of Life Sciences
Kenneth Johnson
Penn State University
Martha Kilpack
Brigham Young University
Byeorhi Kim
Kyungpook National University
Michael Kinyon
University of Denver
Jens Köplinger
Jaromy Kuhl
University of West Florida
Victoria Lebed
Trinity College Dublin
Jung Hoon Lee
Chonbuk National University
Andrew Linshaw
University of Denver
Eric Moorhouse
University of Wyoming
Sujoy Mukherjee
George Washington University

Naofumi Muraki
Iwate Prefectural University

Gábor Nagy
University of Szeged

Alex Nowak
Iowa State University

Hwajin Park
University of Denver

Scott Pellicane

J. D. Phillips
Northern Michigan University

Jesse Prince-Lubawy
University of North Alabama

Adam Přenosil
Charles University

Susanne Pumplün
University of Nottingham

Lee Raney
University of North Alabama

Michael Rios
Dyonica ICMQG

Anna Romanowska
Warsaw University of Technology

Jonathan Smith
Iowa State University

Fedir Sokhatsky
Donetsk Vasyl Stus National University

Gilliard Souza dos Anjos
University of Sao Paulo

David Stanovský
Charles University

Olena Tarkovska
Khmelnitskiy National University

Vasile Ursu
Technical University of Moldova

Petr Vojtěchovský
University of Denver

Friedrich Wagemann
University of Nantes

Stefanie Wang
Iowa State University

Seung Yeop Yang
University of Denver

Andrei Zavarnitsine
Sobolev Institute of Mathematics
SELECTED PUBLISHED TITLES IN THIS SERIES

720 Alexandre Girouard, Editor, Spectral Theory and Applications, 2018

719 Florian Sobieczky, Editor, Unimodularity in Randomly Generated Graphs, 2018

718 David Ayala, Daniel S. Freed, and Ryan E. Grady, Editors, Topology and Quantum Theory in Interaction, 2018

717 Federico Bonetto, David Borthwick, Evans Harrell, and Michael Loss, Editors, Mathematical Problems in Quantum Physics, 2018

716 Alex Martsinkovsky, Kiyoshi Igusa, and Gordana Todorov, Editors, Surveys in Representation Theory of Algebras, 2018

715 Sergio R. López-Permouth, Jae Keol Park, S. Tariq Rizvi, and Cosmin S. Roman, Editors, Advances in Rings and Modules, 2018

714 Jens Gerlach Christensen, Susanna Dann, and Matthew Dawson, Editors, Representation Theory and Harmonic Analysis on Symmetric Spaces, 2018

713 Naihuan Jing and Kailash C. Misra, Editors, Representations of Lie Algebras, Quantum Groups and Related Topics, 2018

712 Nero Budur, Tommaso de Fernex, Roi Docampo, and Kevin Tucker, Editors, Local and Global Methods in Algebraic Geometry, 2018

711 Thomas Creutzig and Andrew R. Linshaw, Editors, Vertex Algebras and Geometry, 2018

710 Raphaël Danchin, Reinhard Farwig, Jiří Neustupa, and Patrick Penel, Editors, Mathematical Analysis in Fluid Mechanics, 2018

709 Fernando Galaz-García, Juan Carlos Pardo Millán, and Pedro Solórzano, Editors, Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics, 2018

708 Christian Ausoni, Kathryn Hess, Brenda Johnson, Ieke Moerdijk, and Jérôme Scherer, Editors, An Alpine Bouquet of Algebraic Topology, 2018

707 Nitya Kitchloo, Mona Merling, Jack Morava, Emily Riehl, and W. Stephen Wilson, Editors, New Directions in Homotopy Theory, 2018

706 Yeonhyang Kim, Sivaram K. Narayan, Gabriel Picioroaga, and Eric S. Weber, Editors, Frames and Harmonic Analysis, 2018

705 Graham J. Leuschke, Frauke Bleher, Ralf Schiffler, and Dan Zacharia, Editors, Representations of Algebras, 2018

704 Alain Escassut, Cristina Perez-Garcia, and Khodr Shamseddine, Editors, Advances in Ultrametric Analysis, 2018

703 Andreas Malmendier and Tony Shaska, Editors, Higher Genus Curves in Mathematical Physics and Arithmetic Geometry, 2018

702 Mark Grant, Gregory Lupton, and Lucile Vandembroucq, Editors, Topological Complexity and Related Topics, 2018

701 Joan-Carles Lario and V. Kumar Murty, Editors, Number Theory Related to Modular Curves, 2018

700 Alexandre Girouard, Dmitry Jakobson, Michael Levitin, Nilima Nigam, Iosif Polterovich, and Frédéric Rochon, Editors, Geometric and Computational Spectral Theory, 2017

699 Mark L. Agranovsky, Matania Ben-Artzi, Catherine Bénételleau, Lavi Karp, Dmitry Khavinson, Simeon Reich, David Shoikhet, Gilbert Weinstein, and Lawrence Zalcman, Editors, Complex Analysis and Dynamical Systems VII, 2017

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/conmseries/.
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law \(x(yz) = (xy)z \). The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications.

This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado.

Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables.

An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.