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Preface 

We wrote this book with two goals in mind: 
(i) To give a leisurely and fairly comprehensive introduction to the definition 

and construction of Grobner bases; 
(ii) To discuss applications of Grobner bases by presenting computational 

methods to solve problems which involve rings of polynomials. 
This book is designed to be a first course in the theory of Grobner bases suitable 
for an advanced undergraduate or a beginning graduate student. This book is 
also suitable for students of computer science, applied mathematics, and engi­
neering who have some acquaintance with modern algebra. The book does not 
assume an extensive knowledge of algebra. Indeed, one of the attributes of this 
subject is that it is very accessible. In fact, all that is required is the notion of the 
ring of polynomials in several variables (and rings in general in a few places, in 
particular in Chapter 4) together with the ideals in this ring and the concepts of 
a quotient ring and of a vector space introduced at the level of an undergraduate 
abstract and linear algebra course. Except for linear algebra, even these ideas 
are reviewed in the text. Some topics in the later sections of Chapters 2, 3, and 4 
require more advanced material. This is always clearly stated at the beginning of 
the section and references are given. Moreover, most of this material is reviewed 
and basic theorems are stated without proofs. 

The book can be read without ever "computing" anything. The theory stands 
by itself and has important theoretical applications in its own right. However, 
the reader will not fully appreciate the power of, or get insight into, the methods 
introduced in the book without actually doing some of the computations in the 
examples and the exercises by hand or, more often, using a Computer Algebra 
System (there are over 120 worked-out examples and over 200 exercises). Com­
puting is useful in producing and analyzing examples which illustrate a concept 
already understood, or which one hopes will give insight into a less well under­
stood idea or technique. But the real point here is that computing is the very 
essence of the subject. This is why Grobner basis theory has become a major 
research area in computational algebra and computer science. Indeed, Grobner 
basis theory is generating increasing interest because of its usefulness in pro-
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viding computational tools which are applicable to a wide range of problems in 
mathematics, science, engineering, and computer science. 

Grobner bases were introduced in 1965 by Bruno Buchberger1 [Bu65]. The 
basic idea behind the theory can be described as a generalization of the theory 
of polynomials in one variable. In the polynomial ring fe[x], where A: is a field, 
any ideal J can be generated by a single element, namely the greatest common 
divisor of the elements of / . Given any set of generators {/i,... , / s } C k[x] 
for J, one can compute (using the Euclidean Algorithm) a single polynomial 
d — gcd( / i , . . . , fs) such that J = ( / i , . . . , fs) = (d). Then a polynomial / € k[x] 
is in J if and only if the remainder of the division of / by d is zero. Grobner 
bases are the analog of greatest common divisors in the multivariate case in the 
following sense. A Grobner basis for an ideal J C fc[#i,... ,xn] generates I and 
a polynomial / G k[x\,... , xn] is in J if and only if the remainder of the division 
of / by the polynomials in the Grobner basis is zero (the appropriate concept of 
division is a central aspect of the theory). 

This abstract characterization of Grobner bases is only one side of the theory. 
In fact it falls far short of the true significance of Grobner bases and of the 
real contribution of Bruno Buchberger. Indeed, the ideas behind the abstract 
characterization of Grobner bases had been around before Buchberger's work. 
For example, Macaulay [Mac] used some of these ideas at the beginning of 
the century to determine certain invariants of ideals in polynomial rings and 
Hironaka [Hi], in 1964, used similar ideas to study power series rings. But the 
true significance of Grobner bases is the fact that they can be computed. Bruno 
Buchberger's great contribution, and what gave Grobner basis theory the status 
as a subject in its own right, is his algorithm for computing these bases. 

Our choice of topics is designed to give a broad introduction to the elemen­
tary aspects and applications of the subject. As is the case for most topics in 
commutative algebra, Grobner basis theory can be presented from a geometric 
point of view. We have kept our presentation algebraic except in Sections 1.1 
and 2.5. For those interested in a geometric treatment of some of the theory we 
recommend the excellent book by D. Cox, J. Little and D. O'Shea [CLOS]. The 
reader who is interested in going beyond the contents of this book should use our 
list of references as a way to access other sources. We mention in particular the 
books by T. Becker and V. Weispfenning [BeWe] and by B. Mishra [Mi] which 
contain a lot of material not in this book and have extensive lists of references 
on the subject. 

Although this book is about computations in algebra, some of the issues which 
might be of interest to computer scientists are outside the scope of this book. 
For example, implementation of algorithms and their complexity are discussed 
only briefly in the book, primarily in Section 3.3. The interested reader should 
consult the references. 

Wolfgang Grobner was Bruno Buchberger's thesis advisor. 
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In Chapter 1 we give the basic introduction to the concept of a Grobner basis 
and show how to compute it using Buchberger's Algorithm. We are careful to 
give motivations for the definition and algorithm by giving the familiar examples 
of Gaussian elimination for linear polynomials and the Euclidean Algorithm for 
polynomials in one variable. In Chapter 2 we present the basic applications to 
algebra and elementary algebraic geometry. We close the chapter with three 
specialized applications to algebra, graph theory, and integer programming. In 
Chapter 3 we begin by using the concept of syzygy modules to give an improve­
ment of Buchberger's Algorithm. We go on to show how to use Grobner bases to 
compute the syzygy module of a set of polynomials (this is solving diophantine 
equations over polynomial rings). We then develop the theory of Grobner bases 
for finitely generated modules over polynomial rings. With these, we extend 
the applications from the previous chapter, give more efficient methods for com­
puting some of the objects from the previous chapter, and conclude by showing 
how to compute the Hom functor and free resolutions. In Chapter 4 we develop 
the theory of Grobner bases for polynomial rings when the coefficients are now 
allowed to be in a general Noetherian ring and we show how to compute these 
bases (given certain computability conditions on the coefficient ring). We show 
how the theory simplifies when the coefficient ring is a principal ideal domain. 
We also give applications to determining whether an ideal is prime and to com­
puting the primary decomposition of ideals in polynomial rings in one variable 
over principal ideal domains. 

We give an outline of the section dependencies at the end of the Preface. 
After Chapter 1 the reader has many options in continuing with the rest of the 
book. There are exercises at the end of each section. Many of these exercises 
are computational in nature, some doable by hand while others require the use 
of a Computer Algebra System. Other exercises extend the theory presented in 
the book. A few harder exercises are marked with (*). 

This book grew out of a series of lectures presented by the first author at the 
National Security Agency during the summer of 1991 and by the second author 
at the University of Calabria, Italy, during the summer of 1993. 

We would like to thank many of our colleagues and students for their helpful 
comments and suggestions. In particular we would like to thank Beth Arnold, 
Ann Boyle, Garry Helzer, Karen Horn, Perpetua Kessy, Lyn Miller, Alyson 
Reeves, Elizabeth Rutman, Brian Williams, and Eric York. We also want to 
thank Sam Rankin, Julie Hawks and the AMS staff for their help in the prepa­
ration of the manuscript. 
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membership problem, 225 
of relations, 232 
quotient, 217, 231 

saturation of, 238 
zero-dimensional, 64, 262 

image of a homomorphism, 80 
implicitization, 91 
induction, 277 
integer programming, 105 
inter-reduced, 131 
intersection 

of ideals 
field case, 70, 172, 175 
ring case, 230 

of modules, 157, 175, 176, 178 
inverse in k[xi,... , x n ] / 7 , 59, 182 
irreducible ideal, 261 
isomorphic varieties, 94 
isomorphism, module, 116 

kernel of a homomorphism, 80, 232 

Lakshman, 77 
Lazard, 68, 201, 254, 259 
leading coefficient 

multi-variable case, 21, 202 
one variable case, 10 
vector case, 143 

leading monomial, 143 
leading power product, 21, 202 
leading term 

ideal, 32, 206 
module, 147 
mul t ivar ia te case, 21, 202 
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vector case, 143 

least common multiple 
of polynomials, 71 
of vectors, 147 

lex, 19 

linear equations are solvable, 204, 262 
local ring, 238 
localization, 89 
long division, 10 

membership problem 
algebra, 39 
ideal over field, 5, 53 
ideal over ring, 225 
module, 153 

minimal 
Grobner basis, field case, 47 
Grobner basis, ring case, 211 
strong Grobner basis, 251 
with respect to F , 205 

minimal polynomial, 97 
module, 113 

elimination, 156 
explicitly given, 117 
First Isomorphism Theorem, 117 
free, 114 
Grobner basis for, 147 
homomorphism, 116 
ideal quotient, 157, 177, 182 
intersection, 157, 175, 176, 178 
isomorphism, 116 
leading term module, 147 
membership problem, 153 
Noetherian, 116 
normal form, 155 
quotient, 116 
reduction in, 143 
S-polynomial, 148 
syzygy, 118 

Moller, 170, 201, 216, 250 
monic polynomial, 13 
monoid, 37 
monomial 

ideal, 23 
in modules, 141 
leading, 143 

Mora, 23, 68 
multiplicative set, 238 

Noetherian 
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module, 116 
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normal form 
polynomial case 
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over a ring, 227 

vector case, 155 
normal selection strategy, 130 
Nullstellensatz, 62 

order, 18 
degree lexicographic (deglex), 19 
degree reverse lexicographic 

(degrevlex), 20 
elimination, 69 
induced by a matrix, 166 
lexicographic (lex), 19 
position over term (POT), 142 
term, 18, 140 
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well-ordering, 18, 277 

P-primary ideal, 261 
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polynomial, 1 

elementary symmetric, 25 
homogeneous, 22, 38 
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monic, 13 
normal form, 57, 227 
reduced, 27 
square free, 75 
symmetric, 25, 88 

position over term (POT), 142 
power product, 1, 18 

leading, 21, 202 
presentation, 117, 119, 195 
primality test, 244 
primary 

component, 261 
decomposition, 261 
ideal, 260 

prime 
component, 261 

ideal, 61, 237, 259 
principal ideal, 13, 246 
Principal Ideal Domain (PID), 13, 246 
projection map, 90 
pullback, 182 

quotient 
module, 116 
ring, 5 

radical of an ideal, 62, 259 
reduced 

Grobner basis 
ideal case over fields, 48 
module case, 150 

polynomial over a field, 27 
totally, 227 
vector, 144 

reduction 
linear case, 8 
module case, 143 
multivariable case over a field, 25, 26, 

27 
multivariable case over a ring, 203, 205 
one variable case, 11 
strong, 252, 258 

remainder 
module case, 144 
multivariable case over a field, 27 
one variable case over a field, 11 

ring 
commutative, 1 
local, 238 
localization, 89 
Noetherian, 6, 259 
of fractions, 238 
quotient, 5 

Robbiano, 23, 39 
row echelon form, 2 

S-basis, 247 
S-polynomial 

module case, 148 
multivariable case over a field, 40, 121, 
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saturated set, 213, 226 
saturation of a set, 213 
saturation of an ideal, 238 
Schreyer, 165 
Seidenberg, 78 
Shannon, 82, 88 
square free polynomial, 75 
standard basis, 32 
strong 

Grobner basis, 251 
minimal Grobner basis, 251, 254, 
reduction, 252, 258 

subalgebra, 39 
submodule, 114 
Sweedler, 39, 82, 88 
symmetric polynomial, 25, 88 
syzygy 

and Grobner bases, 121 
applications of, 171 
homogeneous, 121, 212 
of a matrix, 161 

module of, 161 
of vectors over a field, 118 

module of, 118, 134 
of vectors over a ring, 212 

module of, 232, 246 
Szekeres, 254 

tensor product of matrices, 189 
term 

module case, 140 
order 

module case, 140 
polynomial case, 18 

polynomial case, 1, 18 
term over position (TOP), 142 
three color problem, 102 
total order, 18, 277 
totally reduced, 227 
Trager, 237 
transpose matrix, 176 
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isomorphic, 94 
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well-ordering, 18, 277 
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Zariski closure, 90 
zero divisor, 61 
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