## An Invitation to Arithmetic Geometry

## Dino Lorenzini

Graduate Studies in Mathematics<br>Volume 9

This page intentionally left blank

## Other Titles in This Series

9 Dino Lorenzini, An invitation to arithmetic geometry. 1996
8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996
7 Gerald J. Janusz, Algebraic number fields, second cdition. 1996
6 Jens Carsten Jantzen, Lectures on quantum groups. 1996
5 Rick Miranda, Algebraic curves and Riemann surfaces. 1995
4 Russell A. Gordon, The integrals of Lebesgue. Denjoy. Perron, and Henstock. 1994
3 William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, 1994
2 Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity. 1993
1 Ethan Akin, The general topology of dynamical systems. 1993

This page intentionally left blank

This page intentionally left blank

# An Invitation to Arithmetic Geometry 

## Dino Lorenzini

Graduate Studies<br>in Mathematics<br>Volume 9

# Editorial Board 

James E. Humphreys<br>Lance Small

2000 Mathematics Subject Classification. Primary 11-XX, 14-XX;
Secondary $12-\mathrm{XX}, 13-\mathrm{XX}$.

Library of Congress Cataloging-in-Publication Data<br>Lorenzini, Dino, 1962-<br>An invitation to arithmetic geometry / Dino Lorenzini.<br>p. cm. - (Graduate studies in mathematics, ISSN 1065-7339; v. 9)<br>Includes bibliographical references (p. - ) and index.<br>ISBN 0-8218-0267-4 (hardcover : alk. paper)<br>1. Arithmetical algebraic geometry. I. Title. II. Series.

## QA242.5.L67 1996

512'.74-dc20
95-24459
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 1996 by the American Mathematical Society. All rights reserved.

Reprinted with corrections in 1997.
The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

To Madeline
A ma mère
Al mio padre
And to those who
fight hunger and poverty

This page intentionally left blank

## Contents

Preface ..... xiii
Description of the chapters ..... 1
Chapter I. Integral closure ..... 5

1. Introduction ..... 5
2. Integral elements ..... 9
3. Products of ideals ..... 16
4. Noetherian rings ..... 20
5. Rings of dimension 1 ..... 28
6. Dedekind domains ..... 31
Chapter II. Plane curves ..... 35
7. Introduction ..... 35
8. Rings of functions ..... 38
9. Points and maximal ideals ..... 45
10. Morphisms of curves ..... 47
11. Singular points ..... 51
12. Localization ..... 57
13. More on dimension ..... 63
14. Local principal ideal domains ..... 67
15. Localization of modules ..... 71
16. Hilbert's Basis Theorem ..... 76
17. More rings of functions ..... 77
Chapter III. Factorization of ideals ..... 85
18. Introduction ..... 85
19. Unique factorization of ideals ..... 88
20. Ramification index and residual degree ..... 93
21. Explicit factorizations ..... 98
22. Ramified and unramified primes ..... 101
23. Simple extensions ..... 105
24. Examples ..... 108
25. Galois extensions ..... 116
26. Galois covers ..... 120
Chapter IV. The discriminants ..... 131
27. Introduction ..... 131
28. The discriminant as a norm ..... 133
29. The discriminant of a basis ..... 138
30. Examples of non-simple extensions ..... 141
31. The discriminant ideal ..... 143
32. Norm map on ideals ..... 149
Chapter V. The ideal class group ..... 157
33. Introduction ..... 157
34. Definition of the ideal class group ..... 158
35. Rings with finite quotients ..... 160
36. The case of number fields ..... 163
37. The case of function fields (I) ..... 167
38. Absolute values and valuations ..... 168
39. Archimedian absolute values and the product formula ..... 172
40. The case of function fields (II) ..... 176
41. Valuations and local principal ideal domains ..... 181
42. Nonsingular complete curves ..... 183
Chapter VI. Projective curves ..... 193
43. Introduction ..... 193
44. Projective spaces ..... 194
45. Plane projective curves ..... 199
46. Projective transformations ..... 203
47. Conics ..... 205
48. Projections ..... 206
49. The tangent line at a point of a projective curve ..... 209
50. Functions on a projective curve ..... 213
51. Projective curves and valuaticns ..... 217
52. The intersection of two projective curves ..... 221
Chapter VII. Nonsingular complete curves ..... 225
53. Introduction ..... 225
54. Nonsingular curves and Dedekind domains, revisited ..... 227
55. Fields of definition and Galois actions on curves ..... 230
56. Function fields ..... 236
57. Morphisms of nonsingular complete curves ..... 244
58. Fields of definition, revisited ..... 252
59. The divisor class group ..... 259
Chapter VIII. Zeta-functions ..... 269
60. Introduction ..... 269
61. The Riemann $\zeta$-function ..... 274
62. $\zeta$-functions and Euler products ..... 276
63. Power series ..... 277
64. The zeta-function of a nonsingular curve ..... 279
65. The rationality of the zeta-function ..... 284
66. The functional equation ..... 288
67. Jacobi sums ..... 292
68. Relations between class numbers ..... 296
Chapter IX. The Riemann-Roch Theorem ..... 305
69. Introduction ..... 305
70. Laurent expansions ..... 308
71. Riemann's Theorem ..... 310
72. Duality ..... 316
73. Changing the ground field ..... 323
74. The genus of a nonsingular plane curve ..... 327
75. The arithmetical genus ..... 329
76. The Riemann-Hurwitz formula ..... 331
77. Maps to projective spaces ..... 333
Chapter X. Frobenius morphisms and the Riemann hypothesis ..... 339
78. Inseparable extensions ..... 339
79. The Frobenius morphisms ..... 344
80. The Frobenius endomorphism ..... 348
81. The Frobenius element at a point of a Galois cover ..... 351
82. The Riemann hypothesis ..... 354
83. End of the proof ..... 358
Chapter XI. Further topics ..... 361
84. Diophantine problems ..... 361
85. Surfaces ..... 362
86. The jacobian variety ..... 363
87. Galois representations ..... 365
88. The characteristic polynomial of Frobenius ..... 366
89. From $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ to $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ ..... 368
90. $\zeta$-functions ..... 371
91. Extensions with given Galois groups ..... 373
Chapter XII. Appendix ..... 375
92. Gauss' Lemma ..... 375
93. Field theory ..... 376
94. Infinite Galois extensions ..... 377
95. Projective limits ..... 380
96. Finite fields ..... 382
Glossary of notation ..... 383
Index ..... 387
Bibliography ..... 393

## Preface

This book grew out of a set of notes from a graduate course in which I tried to introduce the students, in a single course, to both algebraic number theory and the theory of curves. Most books in the literature that touch upon both subjects discuss the function field case from a very algebraic point of view. The modern language of arithmetic geometry is very geometric, and I hope that it will be useful to have in the literature a book such as this with a more geometric introductory presentation of the function field case.

Let us define arithmetic geometry in this preface to be the study of the solutions in $k^{n}$ of a system of polynomial equations in $n$ variables with coefficients in a ring $k$ (such as $k=\mathbb{Z}, k=\mathbb{Q}$, or $k=\mathbb{Z} / p \mathbb{Z}$ ). While the central problem of arithmetic geometry is thus easily described, mastering the powerful tools developed in the last thirty years to study solutions of polynomials is extremely challenging for beginners ${ }^{1}$. A student with a basic knowledge of algebra and Galois theory will first have to take a course in algebraic number theory, a course in commutative algebra, and a course in algebraic geometry (including scheme theory) to be able to understand the language in which theorems and proofs are stated in modern arithmetic geometry. Moreover, a student who has had the opportunity to take those three courses will be faced with the additional hurdle of understanding their interconnections.

An Invitation to Arithmetic Geometry tries to present in a unified manner, from the beginning, some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and to bring out the deep analogies between these topics. This book introduces the reader to arithmetic geometry by focusing primarily on the dimension one case (that is, curves in algebraic

[^0]geometry, rings of dimension one in commutative algebra). Topics covered and interconnected include:
(i) rings of integers, discriminant and ramification, ideal class group (in algebraic number theory),
(ii) localizations, Dedekind domains, discrete valuation rings (in commutative algebra),
(iii) affine and projective curves, the Riemann-Roch theorem (in algebraic geometry), and
(iv) the zeta-function of a curve cver a finite field and the analogue of the Riemann hypothesis (in arithmetic geometry).

An example of a fundamental analogy relating these fields of study is the analogy between a ring of integers wita its set of archimedian absolute values in number theory, and its analogue in alsebraic geometry, an affine curve with its set of points at infinity. This analogy is key to many of the recent translations of statements made in number theory to statements in algebraic geometry, and vice-versa. Unfortunately, this analogy is usually not developed in a course in number theory, nor in a course in algebraic geometry. The present text draws out this and other underlying analogits between these fields.

An Invitation to Arithmetic Geometry is designed as a textbook for a year-long introduction to arithmetic geometry. It includes extensive examples to illustrate each new concept and contains problens at the end of each chapter to help the student grasp the material presented. Most of the results presented in this book are classical and, apart from Bombieri's 1972 proof of the Riemann hypothesis for curves over finite fields, have been in the literature since the 1940s. I have tried to include short historical rema-ks whenever possible. This book is not designed to be encyclopedic. It introduces new concepts as they are needed and, where possible, uses this need for a concept to motivate its introduction. Our choice to discuss only the case of dimension one means that certain theorems in the text are not stated in their most general form, but only in the form needed for the purposes of the book. When a theorem is not stated in its most general form, references for generalizations of the theorem are included.

While this book is not meant to be an introduction to the theory of schemes, per se, I have tried to indicate in the text how the geometric notions introduced relate to schemes (see, e.g., II.7, II.11, VII.4.17, and VII.5.9). The field of arithmetic geometry has developed tremendously in the last thirty years, and several major open problems have recently been solved, such as Mordell's conjecture XI.1.1 and Fermat's Last Theorem. The proofs of these deep theorems use the language of schemes and the techniques of algebraic geometry. A student of arithmetic geometry needs to master these difficult techniques in addition to the materials presented in this book. I hope that the unified introduction to these topics presented in this book will serve as a motivation for students to learn these techniques and pursue further study of the beautiful interconnections between
arithmetic and geometry.
In the course of writing this book, I have received valuable comments on preliminary versions of the manuscript from several colleagues and graduate students. Many thanks to all these people and, in particular, to Ted Chinburg, Hua Chieh Li, Qing Liu, Madeline Morris, Frans Oort, and to Jeff Achter, Glenn Fox, Jon Grantham, Kevin James, Shuguang Li, David Penniston, and Huasong Yin. I have also benefited greatly from the atmosphere of warm collegiality in the University of Georgia Mathematics Department, and especially in its number theory group: William Alford, Sybilla Beckmann, Andrew Granville, Carl Pomerance, and Robert Rumely. Many thanks to my colleagues Brian Boe, Henry Edwards, William Kazez, Ming Jun Lai, and Ted Shifrin for putting up with my questions on software and hardware. Finally, I would like to thank Marilyn Gail Suggs, whose outstanding $T_{E} \mathrm{X}$ expertise and typing were invaluable in the preparation of this manuscript.

May 15, 1995
Dino Lorenzini
Athens, Georgia

This page intentionally left blank

## Glossary of notation

| $\alpha \equiv \beta$ | congruence modulo an ideal, 3 |
| :---: | :---: |
| $\mathcal{O}_{L}$ | ring of integers in a number field $L, 13$ |
| $I J$ | product of two ideals, 17 |
| $I+J$ | sum of two ideals, 17 |
| $\mathfrak{P}$ | prime ideal, 18 |
| $\mathbb{F}_{p^{n}}$ | finite field of order $p^{n}, 19$ |
| $\operatorname{dim} A$ | dimension of a ring, 28 |
| $Z_{f}(k)$ | zeroes of $f$ with coordinates in $k, 35$ |
| $\mathbb{A}^{1}(F), \mathbb{A}^{n}(F)$ | affine line, affine space, 35 |
| $\operatorname{deg}_{y}(f)$ | degree in $y$ of $f, 35$ |
| $C(Z, F)$ | ring of continuous functions from $Z$ to $F, 39$ |
| $\pi^{*}$ | ring homomorphism induced on functions, 39 |
| $\mathbf{x}, \mathbf{y}, \mathrm{g}$ | polynomial maps, 40 |
| $\operatorname{Res}(f, g)$ | resultant of $f$ and $g, 41$ |
| $\operatorname{Res}_{y}(f, g)$ | resultant with respect to the variable $y, 42$ |
| $C_{f}$ | ring of polynomial functions, 43 |
| $\bar{k}\left(Z_{f}\right)$ | field of rational functions, 44 |
| $\operatorname{Max}(A)$ | set of maximal ideals of a ring $A, 45$ |
| $p_{x}, p_{y}$ | projections onto the $x$-axis and $y$-axis, 48 |
| $\operatorname{Spec}(A)$ | spectrum of a ring, 50 |
| $\operatorname{Spec}(\psi)$ | map on spectrum induced by a ring homomorphism $\psi, 50$ |
| $\operatorname{disc}(g)$ | discriminant of a polynomial $g, 53$ |
| $S^{-1} A$ | ring of fractions of $A$ with respect to $S, 58$ |
| $S^{-1} I$ | ideal in $S^{-1} A$ generated by the image of an ideal $I, 60$ |
| $A_{P}$ | localization of $A$ at $P, 61$ |
| $S^{-1} M$ | module of fractions, 71 |
| $\mathrm{res}_{U, V}$ | restriction map, 79 |
| $\left\{U_{i}\right\}_{i \in I}$ | open cover, 79 |
| $\operatorname{rank}_{A}(M)$ | rank of an $A$-module, 81 |
| $V(I)$ | closed set in the Zariski topology, 81 |
| $i_{P}\left(Z_{f}(\bar{k}), Z_{g}(\bar{k})\right)$ | intersection multiplicity at $P$ of $Z_{f}(\bar{k})$ and $Z_{g}(\bar{k}), 83$ |

$P \mid I \quad P$ divides $I, 92$
$\operatorname{ord}_{P}(I) \quad$ the order of $I$ at $P, 92$
$f_{M / P} \quad$ residual degree, 94
$e_{M / P} \quad$ ramification index, 95
$A[\alpha] \quad$ smallest subring of $\bar{K}$ containing $A$ and $\alpha, 99$
$\operatorname{char}(F) \quad$ characteristic of the field $F, 102$
$\mu_{n}(K) \quad n$-th root of unity in $K, 112$
$K\left(\mu_{p}\right), K\left(\zeta_{p}\right) \quad p$-th cyclotomic extension, 112
$D_{M} \quad$ decomposition group at $M, 117$
$I_{M} \quad$ inertia group at $M, 117$
$\operatorname{Frob}(M) \quad$ Frobenius substitution, 120
$\left(C_{f}\right)^{G} \quad$ ring of invariants, 120
$Z / G \quad$ quotient space, 121
$F_{p} \quad$ Fermat curve, 124
Norm $_{R / F} \quad$ norm map, 133
$\operatorname{Tr}_{R / F} \quad$ trace map, 134
$\mathrm{N}_{L / K} \quad$ norm map of a field extension, 134
$\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ discriminant of a basis, 140
$d_{B / A} \quad 143$
$\delta_{B / A} \quad 143$
$\Delta_{B / A} \quad$ discriminant ideal, 145
$N_{B / A}(I) \quad$ ideal-norm of the ideal $I, 150$
$I_{A}$
$\mathcal{M}(A$
set of ideals of $A, 150$
$\mathrm{Cl}(A) \quad$ ideal class group, 159
$\|I\|_{A} \quad$ norm of an ideal, 160
$h_{K} \quad$ class number of a number field, 164

$v, v_{p}, v_{P}, v_{\mathfrak{P}}$
$\|_{P}$
valuations, 170
$n_{\mathfrak{F} / P}$
$V(L) \quad$ set of absolute values of $L, 172,179$
$\left|\left.\right|_{\infty},\right|_{\left.\right|_{\sigma}}, \quad$ archimedian absolute values, 172
$\mathfrak{R}(s), \mathfrak{J}(s) \quad$ real and imaginary parts, 173
$w \mid \infty \quad 174$
$n_{w / \infty}, n_{w / v}$
174
$\mathcal{O}_{v}$
$\mathcal{M}_{v} \quad$ maximal ideal of $\mathcal{O}_{v}, 181$
$k_{v} \quad$ residue field $\mathcal{O}_{v} / \mathcal{M}_{v}, 182$
$\mathcal{V}(L / k) \quad$ set of surjective valuations of $L$ trivial on $k, 183$
$\mathcal{O}_{P} \quad$ ring of rational functions defined at $P, 184,214$
$\mathcal{O}_{X}(U) \quad$ ring of functions on $U, 184$
$\mathbb{P}^{n}(k) \quad$ points with coordinates in $k$ of the projective $n$-space, 194
$\mathbb{P}(V) \quad$ projective space, 195

| $\mathbb{S}^{n}$ | sphere in $\mathbb{R}^{n+1}$, 196 |
| :---: | :---: |
| $\left(c_{0}: \ldots: c_{n}\right)$ | projective coordinates, 197 |
| $X_{F}(k)$ | set of $k$-rational points of a plane curve, 199 |
| $f_{i}(x, y)$ | dehomogenization of $F\left(x_{0}, x_{1}, x_{2}\right), 200$ |
| $\varphi_{\mathbb{A}}, \varphi_{\mathbb{P}}$ | changes of coordinates, 203 |
| $\rho_{\mathbb{P}\left(W_{m}\right), \mathbb{P}\left(W_{\ell}\right), k}$ | projection map, 206 |
| $\rho_{P, L, k}$ | projection from a point to a line, 206 |
| $T_{X_{F}, P}$ | tangent line at $P$ to the curve $X_{F}(\bar{k}), 208$ |
| $k\left(X_{F}\right)$ | field of rational functions, 214 |
| Dom( $\psi$ ) | domain of a rational function $\psi, 214$ |
| $\mathcal{O}(U)$ | ring of rational functions defined on $U, 215$ |
| $\bar{C}_{f}$ | 227 |
| $\varphi_{(a, b)}, \bar{\varphi}_{(a, b)}$ | 227 |
| $\psi_{(a, b)}$ | 228 |
| $k(P)$ | field of definition, 230 |
| $G_{P}$ | stabilizer subgroup of $P, 232$ |
| $X_{\bar{k}} / \bar{k}$ | extension of the scalars, 243 |
| $X_{F} / k$ | nonsingular complete curve defined by $F, 243$ |
| $\varphi^{*}$ | map on functions associated to a morphism, 245 |
| $\pi_{\bar{k}}$ | extension of the scalars, 253 |
| $X(k)$ | set of $k$-rational points, 257 |
| $\operatorname{deg}(P)$ | degree of a point, 258 |
| $N_{n}$ | number of points in $X_{F}\left(\mathbb{F}_{q^{n}}\right)$ or $X\left(\mathbb{F}_{q^{n}}\right), 259,269$ |
| $\operatorname{Div}(B), \operatorname{Div}(L)$ | divisor groups, 260 |
| $\operatorname{div}_{B}, \operatorname{div}_{L}$ | divisor maps, 260 |
| $\operatorname{Div}(X / k)$ | divisor group, 262 |
| div | divisor map, 262 |
| $\operatorname{Pic}(X / k)$ | Picard group or divisor class group, 262 |
| cl | class map, 262 |
| deg | degree map on divisors, 264 |
| $\operatorname{Norm}_{X / Y}$ | norm map on divisors, 264 |
| $\operatorname{Div}^{0}(X / k), \operatorname{Pic}^{0}(X / k)$ | kernels of the degree map, 265 |
| $\mathrm{Pic}^{d}(X / k)$ | set of divisor classes of degree $d, 266$ |
| Eff ${ }^{\text {d }}(X / k)$ | set of effective divisors of degree $d, 266$ |
| $\pi^{*}$ | pull-back map on divisors, 267 |
| $\mathcal{H}_{r}$ | 274 |
| $\zeta(s)$ | Riemann $\zeta$-function, 274 |
| $\zeta(K, s)$ | Dedekind $\zeta$-function, 274 |
| $\zeta(A, s)$ | $\zeta$-function of a Dedekind domain, 276 |
| $\mathbf{Z}\left(X_{F} / \mathbb{F}_{q}, T\right)$ | zeta-function, 279, 280, 284 |
| $E_{\mathcal{L}}$ | 284 |
| $g$ | genus of a curve, 285 |
| $w_{i}$ | root of $f(T), 284$ |
| $f(T)$ | numerator of the zeta-function of a curve, 285 |


| $h$ | class number of a curve $X / \mathbb{F}_{q}, 285$ |
| :---: | :---: |
| $\mathcal{K}$ | canonical class, 289, 319 |
| $J(\rho, \varphi)$ | Jacobi sum, 294 |
| $g_{a}(X)$ | Gauss sum, 294 |
| $R_{K}$ | regulator of a number field, 299 |
| $R$ | regulator in the function field case, 299 |
| $H^{0}(D)$ | 306 |
| $h^{0}(D)$ | dimension of $H^{0}(D), 307$ |
| $\mathcal{L}(D)_{P}$ | stalk at $P$ of the sheaf $\mathcal{L}(D), 310$ |
| $H^{1}(D)$ | cohomology group, 311 |
| $h^{1}(D)$ | dimension of $H^{1}(D), 311$ |
| $g(X)$ | genus of $X / k, 311$ |
| $\varphi_{E, D}$ | map between $H^{1}(E)$ and $H^{1}(D), 312$ |
| $(\alpha)_{\infty}$ | divisor of poles of the function $\alpha, 313$ |
| $(\alpha)_{0}$ | divisor of zeroes of the function $\alpha, 313$ |
| $H^{\vee}$ | vector space dual of $H, 316$ |
| $J$ | vector space of differentials, 317 |
| $\operatorname{Inf}(D, E)$ | 317 |
| $\operatorname{Sup}(D, E)$ | 317 |
| $K(j)$ | canonical divisor attached to a basis $j \in J, 319$ |
| $\operatorname{Div}_{c}(K)$ | "compactified" divisor group, 321 |
| $\\|D\\|$ | 322 |
| $M^{G}$ | submodules of $G$-invariants, 324 |
| $p_{g}, p_{g}\left(X_{F}(D)\right)$ | geometric genus, 327 |
| $X_{F}(\bar{k})^{\text {reg }}$ | set of nonsingular points of $X_{F}(\bar{k}), 329$ |
| $H^{0}\left(X_{F}(\bar{k}), D\right)$ | 329 |
| $p_{a}, p_{a}\left(X_{F}(D)\right)$ | arithmetic genus, 331 |
| $\mathrm{Frob}_{R}$ | absolute Frobenius morphism, 339 |
| $R^{p^{n}}$ | 340 |
| $\alpha^{1 / p^{n}}$ | 340 |
| $f^{\left(p^{n}\right)}(x, y)$ | 344 |
| $\varphi^{n}$ | $n$-th Frobenius morphism, 345 |
| $F$ | Frobenius automorphism in $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right), 349$ |
| $\mathrm{Fr}, \overline{\mathrm{Fr}}$ | Frobenius endomorphism, 349 |
| $\mathcal{N}_{1}(X, \sigma)$ | 358 |

## Index

absolute value, 168
archimedian, 172
associated to a valuation, 170
extension of, 171, 172
equivalent, 175
non-archimedian, 172
trivial, complex, 168
absolutely irreducible polynomial, 227, 236
admissible product, $\mathbf{2 7 8}, 279$
admissible sum, 278
affine,
curve, 65
line, 35,66
plane, space, 35
affine chart, 200
algebraic integer, 7, 10
algebraically closed in $L, \mathbf{2 3 6}$
Arakelov theory, 323
Artin-Schreier extension, 86, 109
automorphism of a curve, 245
base change, 243
Belyi's Theorem, 252

Bézout's Theorem, 43, 222
blowup of a point, 76
branch locus, 102, 248
branched cover, 103
canonical divisor class, 289, 319, 327, 337
chain of primes, $\mathbf{2 8}$
change of coordinates, 203, 209
character, 293, 295
characteristic, 11, 26, 56
Chinese Remainder Theorem, 92, 116
circuit, 36
class field theory, 109
class group,
in additive form, 260
compactified, 321
divisor class group, 261
ideal class group, 159, 296, 341
class number
of a curve, 285
of a number field, 164, 275
Clifford's Theorem, 317
cofinal subset, $\mathbf{3 8 1}$
complete curve, 184, 241
completion, 310
congruence modulo an ideal, 3, 93
congruence relation on a monoid, 158
conic, 205, 211
in standard form, 206
connecting homomorphism, $\mathbf{3 4}$
constant field extension, $115, \mathbf{2 4 3}$
content of a polynomial, 375
coprime, 17, 32
cover, 79,103
cubic, 272, 291, 292
curve,
affine plane, 35, 65
affine, 65
complex, 37
defined over $k, 252$
nonsingular complete, 184, 241
over a finite field, $\mathbf{3 7}$
projective plane, 194, 199
real, 36
cusp, 52
cyclotomic extension, 112, 296
decomposition group, 117, 369
Dedekind, 6
domain, 31, 63, 91, 107, 229, 341
$\zeta$-function, see zeta-function
degree,
of a divisor, $264,265,278$
of a morphism of curves, 245
of an orbit, $\mathbf{2 8 1}$
of a point, 258
of a polynomial, 35
degree function, 176
dehomogenization, 200
directed set, $\mathbf{3 8 0}$
desingularization of curves, 220, 358
different ideal, 143, 153
differentials, 278
dimension of a ring, 28, 63
Dirichlet, 6
Unit Theorem, 298, 299
discrete valuation ring, $\mathbf{1 8 2}$
discriminant,
of a polynomial, 53, 132
of a basis, $22, \mathbf{1 4 0}$
of the trace form, $\mathbf{1 3 8}$
ideal, 145, 167, 275, 301
divides,
$P \mid I, 92$
$v \mid w, 174$
divisor,
canonical, 316, 327
effective, positive, 261, 262, 266, 306, 309
linearly equivalent, 262
of a function, 260,261
divisor class group, see class group
domain of a function, 246
Eisenstein, 6
extension, 112
polynomial, 112, 128, 148
elliptic curve, 52, 203, 272, 291, 334, 335
embeddings, real and complex, 167
Euler product, 276
exponential function, $277, \mathbf{2 7 8}$
extension of the scalars, $243,253,336$
factorial domain, 375
Fermat, 6
curve, 124, 202
quotient, 125,373
Last Theorem, iii, 6, 34, 157, 372
fiber, 103, 247
field of definition of a point, 230, 233
on a complete curve, 256
field of rational functions, 5,44
finitely generated algebra, 65, 76
finitely generated module, or ideal, 20, 148,342
Frobenius, 114
absolute, $\mathbf{3 3 9}$
automorphism in $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right), 349$, 351
element at $P, 353,358$
endomorphism of a curve, $\mathbf{3 4 8}, \mathbf{3 4 9}$
fixed points of, 348,350
$n$-th morphism, 345
substitution, 114, 120, 353
function field, 241
function field of transcendence degree $n, 183$
functional equation,
of a $\zeta$-function, 274
of a zeta-function, 288
fundamental group, 157

Galois, 8
extension, $\mathbf{3 7 7}$
group, $\mathbf{3 7 7}$
Galois action,
on the affine plane, 230
on a complete curve, $\mathbf{2 5 5}$
on divisors, 350
on $\bar{k}(X), 253$
on the projective plane, 234
Galois closure, 245
Galois cover, 121, 351, 352, 358
Galois module, 323
morphism of, 323
Galois representation, 365,366
Gauss, 6
Conjecture, 166, 188
Lemma, 47, 375
sum, 294, 296
genus, $37,282,285,292,302,311,323$, $326,327,331$
arithmetic, 331
geometric, 327
genus formula,
for plane curves, 327
for hyperelliptic curves, 332,337
good reduction, 363
greatest common divisor ideal, 126

Harnack's Theorem, 37, 53
height of a prime, 28

Hilbert, 7
Basis Theorem, 76
Nullstellensatz, 47
homogeneous polynomial, 199
homothety, 203
hyperelliptic curve, 52, 186, 203, 247,
292, 332, 337
involution, 124
hyperplane, 196, 198
ideal-norm map, 151
inertia group, 117, 369
inert prime, 118
inessential prime ideal, 144, 155
inseparable extension, 28,343
integral
basis, 23, 148
closure, $5, \mathbf{1 3}, 54,63,342$
element, 9,10
extension, 10, 127
integrally closed, 13, 54, 56, 91, 127, 229
intersection,
divisor, 262
multiplicity, $83,224,262$
transverse, 83
invariant element, 324
irreducible
element, 375
ideal, 130
jacobian variety, 363
Jacobi sum, 294
Kummer, 6
extension, 109
Krull, 28
dimension, 28, 63
topology, 379
$\ell$-adic integers, 381
Laurent series, 278, 310
expansion, 308
least common multiple ideal, 126
line at infinity, 201, 327
local ring, 61
localization of rings, 51,61
localization of modules, 73
locally free module, 148
logarithm, 277
minimal polynomial over a field, $\mathbf{9}, 10$
Minkowski's bound, 166
modules of fractions, 72
monogène, monogeneic, 105
monoid, 158
Mordell's conjecture, 323
morphism,
of affine plane curves, 48,
of affine curves, 66
of nonsingular complete curves, 245
of projective curves, 208,246
separable, 245, 333, 347
defined over $k, \mathbf{2 5 3}$
multiplicative set, 57

Nakayama's Lemma (also called
Lemma of Krull-Azumaya), 70, 81
Noether, 5
Normalization Lemma, 220, 343
noetherian ring, 20
module, 24
nonsingular,
affine curve, 125
affine plane curve, 51
complete curve, 184, 241
point, $87,194,202$
projective plane curve, 202, 217
norm,
of a divisor, 264
of an element, 133
of an ideal, 149, 343
normal extension, 376
number field, 5
one-point compactification, 197
open cover, 79
order, of an ideal at a prime, 92
of a zero or a pole, 184
ordinary double point, 52
oval, 36, 53
p-adic numbers, 176
parametrization of a curve, 67
perfect field, $33,340, \mathbf{3 7 6}$
Picard group, 259, 287
point at infinity, 194, 201, 208, 212
pole of a function, $214,241,246,263$, 305
power series, admitting addition, 278
admitting multiplication, 278
presheaf, 79
primary ideal, 130
primitive polynomial, 47, 375
prime
ramified, see ramified prime
inert, 118
split completely, 118
totally ramified, 118
principal ideal, 20
principal ideal domain, 3
principal units, 278
product formula,
for number fields, 175
for $k[x], 177$
for function fields, 179,263
product of ideals, $\mathbf{1 7}, 158$
profinite group, $\mathbf{3 8 0}$,
profinite completion of $\mathbb{Z}, \mathbf{3 8 1}$
projection map,
affine, 348
from a point, 206
projective, 206, 246
projective limit, $\mathbf{3 8 0}$
projective
coordinates, 197
line, 184, 193, 195, 280, 305, 334
plane, space, 194, 195
transformation, 203, 269
pull-back of divisiors, 267
purely inseparable, 376
quotient,
curve, 126,352
map, 123, 124
quotient topology, 121
quadratic function field, $11,26,56,188$, 189
quadratic number field, $7,11,100,189$
radical of an ideal, 130
ramification index,
for a ring extension, 94, 95,
for a morphism of curves, $95, \mathbf{1 0 5}$, 248, 333, 338
ramification group, 129
ramification locus, $\mathbf{1 0 2}$
ramification point, $\mathbf{1 0 2}$
ramified point, 248, 338
ramified prime, 101, 108, 167
rank, $23, \mathbf{8 1}$
rational function, $\mathbf{4 4}, \mathbf{1 8 4}$
constant, 67, 214
defined at a point, $57,61,214,241$
domain of, 214
pole of, 62, 184, 214, 241
value of, 214
zero of, 184, 241
rational point on a curve, $\mathbf{2 5 7}$
rationality of the zeta-function, 282 , 285
reduced ring, 130
regular extension, 241
regular local ring, 70
regular point, 329
regular prime, 190
regulator,
of a number field, 275, 299
of a ring of functions, 299
residual degree, 94,248
restriction map, 79, 243
resultant, 41, 42, 83, 132
of homogeneous polynomials, 221
Riemann, 266
Theorem, 311
surface, 63
$\zeta$-function, see zeta-function
Riemann hypothesis, for number fields, 274, for curves, $273,283,287,288,290$, 291, 292, 302, 354
Riemann-Hurwitz formula, 333
Riemann-Roch Theorem, 266, 285, $288,296,299,316,321,326,330$
for singular curves, 331,358
ring of algebraic functions, 43
ring of continuous functions, 39, 45, 121
ring of fractions, $\mathbf{5 8}$
ring of integers, $\mathbf{1 3}$
ring of invariants, 120
ring of rational functions, 184, 215, 241
ring with finite quotients, $\mathbf{1 6 0}$
ringed space, 249
roots of unity, $\mathbf{1 1 2}, 275,281$
scheme, $79,244,249$
separable extension, 31,376
separable morphism, 245, 333, $\mathbf{3 4 7}$
sequence, 24
exact, 24, 34
short exact, 24
Serre duality, 316
sheaf, 79, 243, 315,
cohomology, 315
morphism of, 250
simple extension, 105
singular point, 51, 83
spectrum of a ring, 50
squarefree, 11
stabilizer subgroup, 232
standardized absolute value, 170
Stickelberger's criterion, 154
sum of ideals, $\mathbf{1 7}$
tangent line,
to an affine curve, $\mathbf{5 1}$
to a projective curve, 208, 209
Tate module, 366
topological case, 39, 48
topological field, 10
torsion free module, $\mathbf{2 3}$
torsion module, $\mathbf{2 2}$
trace form, 138
trace map, 134
transcendence degree, 183
triangle inequality, 168, 172
truncated Laurent expansion, 308
twist, 252
unique factorization into irreducible elements, 375
unique factorization of ideals, $17, \mathbf{1 8}$, 88, 90, 91, 91, 126, 276
units, 189, 298, 299
unramified,
extension, 101, 109, 129
morphism, 338
point, 248
prime, 101
valuation, 169, 217
discrete, 169
extension, 190
$P$-adic, 170
trivial, 190
trivial on $k, \mathbf{1 8 3}$,
value of a function, 46, 61, 186

Weil's bound, see Riemann hypothesis

Zariski, 40
topology, 40, 82, 199
zero of a function, 263
zeta-function,
of Dedekind, 273, 300, 301
of a Dedekind domain with finite quotients, 276, 279
of Riemann, 274
of a curve, $272, \mathbf{2 7 9}, 284$

## Bibliography

[AAG] Arithmetical Algebraic Geometry, O. Schilling, Editor, Harper \& Row, New York, 1965.
[Abh] S. Abhyankar, Desingularization of plane curves, Proceedings of Symposia in Pure Mathematics 40 (1983), Part I.
[A-D] D. Anderson and D. Dobbs, Editors, Zero-dimensional commutative rings, Marcel Dekker, 1995.
[A-K] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lect. Notes in Math. 146, Springer Verlag, 1970.
[A-M] M. Atiyah and I. McDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
[BDS] The biographical dictionary of scientists - Mathematicians, D. Abbot, Editor, Blond Educational, 1985.
[Bom] E. Bombieri, Counting points on curves over finite fields (d'après S. A. Stepanov), Séminaire Bourbaki 430 (1972/73).
[Bom2] E. Bombieri, The Mordell Conjecture Revisited, Ann. Sc. Norm. Sup. Pisa, Serie IV, 17 (1990), 614-640, and 18 (1991), 473.
[B-K] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser Verlag, Basel, 1986.
[Bou] N. Bourbaki, Commutative Algebra, English Edition, Addison-Wesley Publishing Company, 1972.
[C-F] J. Cassels and A. Fröhlich, Editors, Algebraic Number Theory, Academic Press, 1967.
[C-S] G. Cornell and J. Silverman, Editors, Arithmetic Geometry, SpringerVerlag, New York, 1986.
[Coh] H. Cohn, Advanced number theory, Dover Publications, Inc., New York, 1980.
[Cox] D. Cox, Primes of the form $x^{2}+n y^{2}$, John Wiley \& Sons, 1989.
[CLO] D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, 1992.
[D-K] O. Debarre and M. Klassen, Points of low degree on smooth plane curves, J. reine angew. Math. 446 (1994), 81-87.
[D-M] P. Deligne and D. Mumford, The Irreducibility of the Space of Curves of Given Genus, Publications IHES 36 (1969), 75-110.
[D-W] R. Dedekind and H. Weber, Theorie der algebraischen Functionen einer Veränderlichen, J. reine angew. Math. 92 (1882), 181-290.
[Den] J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki, Astérisque 201-202-203 (1991), 359-386.
[Die] J. Dieudonné, Directeur de la publication, Abrégé d'histoire des mathématiques I, Hermann, 1978.
[Die2] J. Dieudonné, On the History of the Weil Conjectures, reprinted in E. Freitag and R. Kiehl, Etale Cohomology and the Weil Conjecture, Springer-Verlag, 1988.
[DSB] Dictionary of Scientific Bibliography, C. Gillispie, Editor, Charles Schibner's Sons, New York, 1973.
[Edg] H. Edgar, A number field without an integral basis, Math. Mag. 52 (1979), 248-251.
[EDM] Encyclopedic dictionary of mathematics, English translation of the third edition, K. Itô editor, MIT Press, Cambridge, Massachusetts, 1987.
[Edw] H. Edwards, Divisor Theory, Birkhäuser Boston, 1990.
[E-H] D. Eisenbud and J. Harris, Schemes, the Language of Modern Algebraic Geometry, Wadsworth \& Brooks/Cole, 1992.
[Fal] G. Faltings, Diophantine approximation on abelian varieties, Ann. Math. 133 (1991), 549-576.
[Fer] G. Cornell, J. Silverman, and G. Stevens, Editors, Proceedings of the conference on Fermat's Last Theorem, held at Boston University in August 1995, Springer Verlag, to appear.
[For] O. Forster, Lectures on Riemann Surfaces, Springer-Verlag, 1991.
[Fre] G. Frey, On the Structure of the Class Group of a Function Field, Arch. Math. 33 (1979), 33-40.
[Ful] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry, W. A. Benjamin, Inc., New York, 1969.
[G-F] V. Gautheron and M. Flexor, Un exemple de détermination des entiers d'un corps de nombres, Bull. Sci. Math. 93 (1969), 1-13.
[Gel] S. Gelbart, An elementary introduction to the Langlands program, Bull. of the AMS 10 (1984), 177-219.
[Gol] D. Goldfeld, Gauss' Class Number Problem for Imaginary Quadratic Fields, Bull. of the AMS 13 (1985), 23-37.
[Gil] R. Gilmer, Commutative Ring Theory, in Emmy Noether: a tribute to her life and work, Marcel Dekker, 1981.
[G-R] B. Gross and D. Rohrlich, Some Results on the Mordell-Weil Group of the Jacobian of the Fermat Curve, Inv. Math. 44 (1978), 201-224.
[Harb] D. Harbater, in Number Theory, New York, 1984-85, Springer LNM 1240, Springer Verlag (1987), 165-195.
[Harb2] D. Harbater, Abhyankar's conjecture on Galois groups over curves, Inv. Math. 117 (1994), 1-25.
[Har] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[Hil(f)] D. Hilbert, Théorie des corps de nombres algébriques, translated by A. Lévy and T. Got, Editions Jacques Gabay, 1991.
[Hil(g)] D. Hilbert, Die Theorie der algebraischen Zahlkörper, in Gesammelte Abhandlungen, Vol. I, Chelsea Publishing, New York, 1965.
[Hil] H. Hilton, Plane Algebraic Curves, Oxford University Press, 1920.
[How] E. Howe, Constructing distinct curves with isomorphic Jacobians, J. of Number Theory 26 (1996), 381-390.
[Hut] H. Hutchins, Examples of commutative rings, Polygonal Publishing House, 1981.
[I-R] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (second edition), Springer-Verlag, New York, 1982.
[Jac] N. Jacobson, Basic Algebra I, W. H. Freeman and Company, 1974.
[Ken] K. Kendig, Elementary Algebraic Geometry, Springer-Verlag, New York, 1977.
[Kir] F. Kirwan, Complex algebraic curves, London Math. Soc. Student Texts 23, Cambridge Univ. Press, 1992.
[Kna] A. Knapp, Elliptic Curves, Princeton University Press, 1992.
[Kob] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer Verlag, 1977.
[Kun] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, translated by Michael Ackerman, Birkhäuser Boston, 1985.
[Lan] S. Lang, Algebraic Number Theory, Springer-Verlag, New York, 1986.
[Lan2] S. Lang, Algebra (third edition), Addison-Wesley Publishing Company, Inc., 1984.
[Lan3] S. Lang, Introduction to Arakelov Theory, Springer-Verlag, New York, 1988.
[Lan4] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983.
[Lan5] S. Lang, Number Theory III, Encyclopedia of Mathematical Sciences, vol. 60, Springer-Verlag, 1991.
[Len] H. Lenstra, Primality Testing, in Computational Methods in Number Theory, Part I, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam, 1982.
[LMQ] J. Leitzel, M. Madan, and C. Queen, Algebraic Function Fields with Small Class Number, J. of Number Theory 7 (1975), 11-27.
[Mac] R. MacRae, On Unique Factorization in Certain Rings of Algebraic Functions, J. of Algebra 17 (1971), 243-261.
[M-Q] M. Madan and C. Queen, Algebraic function fields of class number one, Acta Arithmetica XX (1972), 423-432.
[Mar] D. A. Marcus, Number Fields, Springer-Verlag, New York, 1.977.
[Mat] H. Matsumura, Commutative algebra (second edition), The Benjamin/Cummings Company, Inc., 1980.
[Mat2] H. Matsumura, Commutative ring theory, translated by M. Reid, Cambridge University Press, 1986.
[Maz] B. Mazur, Arithmetic on Curves, Bull. of the AMS 14 (1986), 207-259.
[Maz2] B. Mazur, Number Theory as Gadfly, Am. Math. Monthly 98 (1991), 593-610.
[Mor] C. Moreno, Algebraic curves over finite fields, Cambridge University Press, 1991.
[Mum] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Die Grundlehren der math. Wissenschaften, Bd. 221, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[Mum2] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer Verlag, 1988.
[Mum3] D. Mumford, Abelian Varieties, Oxford University Press, 1974.
[Nag] M. Nagata, Local Rings, Interscience Publishers, John Wiley \& Sons, New York-London-Sydney, 1962.
[Nai] M. Nair, Power free values of polynomials, Mathematika 23 (1976), 159-183.
[Nar] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers (second edition), PWN-Polish Scientific Publishers-Warszawa, 1990.
[Neu] J. Neukirch, Class Field Theory, Springer Verlag, 1986.
[Niv] I. Niven, Formal Power Series, Am. Monthly 76, Mathematical Association of America, October 1969, 871-894.
[NTP] From Number Theory to Physics, M. Waldschmidt et al. Editors, Springer-Verlag, 1992.
[Per] R. Perlis, On the Equation $\zeta_{K}(s)=\zeta_{K^{\prime}}(s)$, J. of Number Theory 9 (1977), 342-360.
[Ray] M. Raynaud, Revêtements de la droite affine en caractéristique $p>0$ et conjecture d'Abhyankar, Inv. Math. 116 (1994), 425-462.
[Ri] P. Ribenboim, Algebraic Numbers, Wiley-Interscience, 1972.
[Ri2] P. Ribenboim, L'arithmétique des corps, Hermann, 1972.
[Rib] K. Ribet, Galois representations and modular forms, Bull. of the AMS 32 (1995), 375-402.
[Ser1] J.-P. Serre, Local fields, Springer Verlag, 1979.
[Ser2] J.-P. Serre, Algebraic groups and class field, Springer Verlag, 1988.
[Ser3] J.-P. Serre, Topics in Galois Theory, AK Peters, 1992.
[Ser4] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, no. 128 in Oeuvres, Vol. III, Springer Verlag, 1986.
[Ser5] J.-P. Serre, Facteurs locaux des fonctions zêta, no. 87 in Oeuvres, Vol. II, Springer Verlag, 1986.
[Ser6] J.-P. Serre, Motifs, Journées arithmétiques, 1989, Astérisque 198-200 (1991), 333-349.
[S-T] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517, or no. 79 in Serre, Oeuvres, Vol. II, Springer Verlag, 1986.
[SGA] A. Grothendieck, Séminaire de géometrie algébrique 7, I, Springer Lecture Notes in Math., 288, Springer Verlag, 1972.
[Sha] I. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, Berlin and Heidelberg, 1977.
[S-S] H. Shapiro and G. Sparer, Minimal Bases for Cubic Fields in Comm. on Pure and Applied Mathematics, Vol. XLIV (1991), 1121-1136.
[Sil] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986.
[Spr] G. Springer, Introduction to Riemann surfaces, Chelsea Publishing Company, New York, 1981.
[Sti] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993.
[Sti2] H. Stichtenoth, Die Hasse-Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math. 33 (1979), 357-360.
[Sz] L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque 86, Société Mathématique de France, 1981.
[Szp] L. Szpiro, Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque 127, Société Mathématique de France, 1985.
[Tat] J. Tate, On the conjectures of Birch and Swinnerton-Dyer, In Dix exposés sur la cohomologie des schémas, A. Grothendieck and N. H. Kuiper, Editors, North-Holland (1968).
[UII] P. Ullrich, The genesis of Hensel's p-adic numbers, contributed paper to the "Colloquium Carolus Magnus", Preprint 1995.
[Was] L. Washington, Introduction to Cyclotomic Fields, Springer Verlag, 1982.
[Wat] W. Waterhouse, Introduction to Affine Group Schemes, Springer Verlag, 1979.
[Wei38b] A. Weil, Zur algebraischen Theorie der algebraischen Funktionen, Crelles J. 179, 129-133, (1938), or in Oeuvres Scientifiques, Vol. I, Springer Verlag, 1980.
[Wei39a] A. Weil, Sur l'analogie entre les corps de nombres algébriques et les corps de fonctions algébriques, Revue Scient. 77, pp. 104-106, or in Oeuvres Scientifiques, Vol. I, Springer Verlag, 1980.
[Wei40b] A. Weil, Sur les fonctions algébriques à corps de constantes fini, C. R. 210, pp. 592-594, or in Oeuvres Scientifiques, Vol. I, Springer Verlag, 1980.
[Zak] A. Zaks, Dedekind $k$-Subalgebras of $k(x)$, Comm. in Algebra 5(4) (1977), 347-364.
[Z-S] O. Zariski and P. Samuel, Commutative Algebra, vol. I, Springer Verlag, 1975.

Extremely carefully written, masterfully thought out, and skillfully arranged introduction ... to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand.... an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject ... a highly welcome addition to the existing literature.
—Zentralblatt MATH
The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.


[^0]:    ${ }^{1}$ An example of a polynomial equation in two variables is the Fermat equation $x^{n}+y^{n}=1$. The celebrated Fermat's Last Theorem states that the only solutions in rational numbers to the equation $x^{n}+y^{n}=1$ are the "obvious" ones if $n>2$. Ribet's proof, in 1986, that Fermat's Last Theorem holds if a weak form of the conjecture of Shimura-Tanyiama-Weil holds is an example of modern tools in arithmetic geometry producing new and deep results about easily stated problems in number theory. Wiles announced on June 23, 1993, that he can prove this weak form of the Shimura-Tanyiama-Weil conjecture and, therefore, that Fermat's Last Theorem holds [Rib], [Fer].

