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Preface 

This book grew out of a set of notes from a graduate course in which I tried 
to introduce the students, in a single course, to both algebraic number theory 
and the theory of curves. Most books in the literature that touch upon both 
subjects discuss the function field case from a very algebraic point of view. The 
modern language of arithmetic geometry is very geometric, and I hope that it 
will be useful to have in the literature a book such as this with a more geometric 
introductory presentation of the function field case, 

Let us define arithmetic geometry in this preface to be the study of the solu
tions in kn of a system of polynomial equations in n variables with coefficients 
in a ring k (such as k = Z, k = Q, or k = Z/pZ). While the central problem 
of arithmetic geometry is thus easily described, mastering the powerful tools de
veloped in the last thirty years to study solutions of polynomials is extremely 
challenging for beginners1. A student with a basic knowledge of algebra and Ga
lois theory will first have to take a course in algebraic number theory, a course 
in commutative algebra, and a course in algebraic geometry (including scheme 
theory) to be able to understand the language in which theorems and proofs are 
stated in modern arithmetic geometry. Moreover, a student who has had the 
opportunity to take those three courses wilL be faced with the additional hurdle 
of understanding their interconnections. 

An Invitation to Arithmetic Geometry tries to present in a unified manner, 
from the beginning, some of the basic tools and concepts in number theory, com
mutative algebra, and algebraic geometry, and to bring out the deep analogies 
between these topics. This book introduces the reader to arithmetic geometry 
by focusing primarily on the dimension one case (that is, curves in algebraic 

xAn example of a polynomial equation in two variables is the Fermat equation xn +yn = 1. 
The celebrated Fermat's Last Theorem states that the only solutions in rational numbers to 
the equation xn + yn — 1 are the "obvious" ones if n > 2. Ribet's proof, in 1986, that Fermat's 
Last Theorem holds if a weak form of the conjecture of Shimura-Tanyiama-Weil holds is an 
example of modern tools in arithmetic geometry producing new and deep results about easily 
stated problems in number theory. Wiles announced on June 23, 1993, that he can prove 
this weak form of the Shimura-Tanyiama-Weil conjecture and, therefore, that Fermat's Last 
Theorem holds [Rib], [Fer]. 

xii i 
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geometry, rings of dimension one in commutative algebra). Topics covered and 
interconnected include: 

(i) rings of integers, discriminant and ramification, ideal class group (in 
algebraic number theory), 

(ii) localizations, Dedekind domains, discrete valuation rings (in commuta
tive algebra), 

(iii) affine and projective curves, the Riemann-Roch theorem (in algebraic 
geometry), and 

(iv) the zeta-function of a curve ever a finite field and the analogue of the 
Riemann hypothesis (in arithmetic geometry). 

An example of a fundamental analogy relating these fields of study is the 
analogy between a ring of integers wil l its set of archimedian absolute values in 
number theory, and its analogue in algebraic geometry, an affine curve with its 
set of points at infinity. This analogy is key to many of the recent translations 
of statements made in number theory to statements in algebraic geometry, and 
vice-versa. Unfortunately, this analogy is usually not developed in a course in 
number theory, nor in a course in algebraic geometry. The present text draws 
out this and other underlying analogies between these fields. 

An Invitation to Arithmetic Geometry is designed as a textbook for a year-long 
introduction to arithmetic geometry. It includes extensive examples to illustrate 
each new concept and contains problems at the end of each chapter to help the 
student grasp the material presented. Most of the results presented in this book 
are classical and, apart from Bombien's 1972 proof of the Riemann hypothesis 
for curves over finite fields, have been in the Literature since the 1940s. I have 
tried to include short historical remarks whenever possible. This book is not 
designed to be encyclopedic. It introduces new concepts as they are needed and, 
where possible, uses this need for a concept to motivate its introduction. Our 
choice to discuss only the case of dimension one means that certain theorems in 
the text are not stated in their most general form, but only in the form needed 
for the purposes of the book. When a theorem is not stated in its most general 
form, references for generalizations of the theorem are included. 

While this book is not meant to be an introduction to the theory of schemes, 
per se, I have tried to indicate in the text how the geometric notions introduced 
relate to schemes (see, e.g., II.7, 11.11, VIL4.17, and VII.5.9). The field of arith
metic geometry has developed tremendously in the Last thirty years, and several 
major open problems have recentLy been solved, such as Mordell's conjecture 
XI.1.1 and Fermat's Last Theorem. The proofs of these deep theorems use the 
language of schemes and the techniques of algebraic geometry. A student of 
arithmetic geometry needs to master these difficult techniques in addition to the 
materials presented in this book. I hope that the unified introduction to these 
topics presented in this book will serve as a motivation for students to learn these 
techniques and pursue further study of the beautiful interconnections between 
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congruence modulo an ideal, 3 
ring of integers in a number field L, 13 
product of two ideals, 17 
sum of two ideals, 17 
prime ideal, 18 
finite field of order pn, 19 
dimension of a ring, 28 
zeroes of / with coordinates in /c, 35 
affine line, affine space, 35 
degree in y of / , 35 
ring of continuous functions from Z to F , 39 
ring homomorphism induced on functions, 39 
polynomial maps, 40 
resultant of / and #,41 
resultant with respect to the variable y, 42 
ring of polynomial functions, 43 
field of rational functions, 44 
set of maximal ideals of a ring A, 45 
projections onto the x-axis and ?/-axis, 48 
spectrum of a ring, 50 
map on spectrum induced by a ring homomorphism ^, 50 
discriminant of a polynomial #, 53 
ring of fractions of A with respect to 5, 58 
ideal in S~XA generated by the image of an ideal / , 60 
localization of A at P , 61 
module of fractions, 71 
restriction map, 79 
open cover, 79 
rank of an ^-module, 81 
closed set in the Zariski topology, 81 
intersection multiplicity at P of Zf(k) and Zg(k), 83 
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P divides / , 92 
the order of / at P , 92 
residual degree, 94 
ramification index, 95 
smallest subring of K containing A and a, 99 
characteristic of the field F, 102 
n-th root of unity in K, 112 
p-th cyclotomic extension, 112 
decomposition group at M, 117 
inertia group at M, 117 
Probenius substitution, 120 
ring of invariants, 120 
quotient space, 121 
Fermat curve, 124 
norm map, 133 
trace map, 134 
norm map of a field extension, 134 
discriminant of a basis, 140 
143 
143 
discriminant ideal, 145 
ideal-norm of the ideal / , 150 
set of ideals of A, 150 
monoid of non-zero ideal, 158 
ideal class group, 159 
norm of an ideal, 160 
class number of a number field, 164 
absolute values, 168 
valuations, 170 
standardized absolute value attached to vp, 170 
171 
set of absolute values of L, 172, 179 
archimedian absolute values, 172 
real and imaginary parts, 173 
174 
174 
local principal ideal domain associated to v, 181 
maximal ideal of Ov, 181 
residue field Ov/Mv, 182 
set of surjective valuations of L trivial on k, 183 
ring of rational functions defined at P, 184, 214 
ring of functions on U, 184 
points with coordinates in k of the projective n-space, 194 
projective space, 195 
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sphere in E n + 1 , 196 
projective coordinates, 197 
set of /c-rational points of a plane curve, 199 
dehomogenization of F(xo,xi,X2), 200 
changes of coordinates, 203 
projection map, 206 
projection from a point to a line, 206 
tangent line at P to the curve Xp(k), 208 
field of rational functions, 214 
domain of a rational function ip, 214 
ring of rational functions defined on 17, 215 
227 
227 
228 
field of definition, 230 
stabilizer subgroup of P , 232 
extension of the scalars, 243 
nonsingular complete curve defined by F , 243 
map on functions associated to a morphism, 245 
extension of the scalars, 253 
set of /c-rational points, 257 
degree of a point, 258 
number of points in XF(¥qn) or X(¥qn), 259, 269 
divisor groups, 260 
divisor maps, 260 
divisor group, 262 
divisor map, 262 
Picard group or divisor class group, 262 
class map, 262 
degree map on divisors, 264 
norm map on divisors, 264 
kernels of the degree map, 265 
set of divisor classes of degree d, 266 
set of effective divisors of degree d, 266 
pull-back map on divisors, 267 
274 
Riemann ^-function, 274 
Dedekind ("-function, 274 
C-funetion of a Dedekind domain, 276 
zeta-function, 279, 280, 284 
284 
genus of a curve, 285 

root of/(T), 284 

numerator of the zeta-function of a curve, 285 
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class number of a curve X/¥q, 285 
canonical class, 289, 319 
Jacobi sum, 294 
Gauss sum, 294 
regulator of a number field, 299 
regulator in the function field case, 299 
306 
dimension of H°(D), 307 
stalk at P of the sheaf £(£>), 310 
cohomology group, 311 
dimension of Hl{D), 311 
genus of X/k, 311 
map between Hl(E) and Hl(D), 312 
divisor of poles of the function a, 313 
divisor of zeroes of the function a, 313 
vector space dual of H, 316 
vector space of differentials, 317 
317 
317 
canonical divisor attached to a basis j £ J, 319 
"compactified" divisor group, 321 
322 
submodules of G-invariants, 324 
geometric genus, 327 
set of nonsingular points of XF(k), 329 
329 
arithmetic genus, 331 
absolute Probenius morphism, 339 
340 
340 
344 
n-th Probenius morphism, 345 
Probenius automorphism in Gal(Fg/Fg), 349 
Probenius endomorphism, 349 
358 
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absolute value, 168 
archimedian, 172 
associated to a valuation, 170 
extension of, 171, 172 
equivalent, 175 
non-archimedian, 172 
trivial, complex, 168 

absolutely irreducible polynomial, 
236 

admissible product, 278, 279 
admissible sum, 278 
affine, 

curve, 65 
line, 35, 66 
plane, space, 35 

affine chart, 200 
algebraic integer, 7, 10 
algebraically closed in L, 236 
Arakelov theory, 323 
Artin-Schreier extension, 86, 109 
automorphism of a curve, 245 

base change, 243 
Belyi's Theorem, 252 

Bezout's Theorem, 43, 222 
blowup of a point, 76 
branch locus, 102, 248 
branched cover, 103 

canonical divisor class, 289, 319, 327, 
337 

> chain of primes, 28 
change of coordinates, 203, 209 
character, 293, 295 
characteristic, 11, 26, 56 
Chinese Remainder Theorem, 92, 116 
circuit, 36 
class field theory, 109 
class group, 

in additive form, 260 
compact ified, 321 
divisor class group, 261 
ideal class group, 159, 296, 341 

class number 
of a curve, 285 
of a number field, 164, 275 

Clifford's Theorem, 317 
cofinal subset, 381 
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complete curve, 184, 241 
completion, 310 
congruence modulo an ideal, 3, 93 
congruence relation on a monoid, 158 
conic, 205, 211 

in standard form, 206 
connecting homomorphism, 34 
constant field extension, 115, 243 
content of a polynomial, 375 
coprime, 17, 32 
cover, 79, 103 
cubic, 272, 291, 292 
curve, 

affine plane, 35, 65 
affine, 65 
complex, 37 
defined over k, 252 
nonsingular complete, 184, 241 
over a finite field, 37 
projective plane, 194, 199 
real, 36 

cusp, 52 
cyclotomic extension, 112, 296 

decomposition group, 117, 369 
Dedekind, 6 

domain, 31, 63, 91, 107, 229, 341 
C-function, see zeta-function 

degree, 
of a divisor, 264, 265, 278 
of a morphism of curves, 245 
of an orbit, 281 
of a point, 258 
of a polynomial, 35 

degree function, 176 
dehomogenization, 200 
directed set, 380 
desingularization of curves, 220, 358 
different ideal, 143, 153 
differentials, 278 
dimension of a ring, 28, 63 
Dirichlet, 6 

Unit Theorem, 298, 299 

discrete valuation ring, 182 
discriminant, 

of a polynomial, 53, 132 
of a basis, 22, 140 
of the trace form, 138 
ideal, 145, 167, 275, 301 

divides, 
P | / , 92 
v | w, 174 

divisor, 
canonical, 316, 327 
effective, positive, 261, 262, 266, 

306, 309 
linearly equivalent, 262 
of a function, 260, 261 

divisor class group, see class group 
domain of a function, 246 

Eisenstein, 6 
extension, 112 
polynomial, 112, 128, 148 

elliptic curve, 52, 203, 272, 291, 334, 
335 

embeddings, real and complex, 167 
Euler product, 276 
exponential function, 277, 278 
extension of the scalars, 243, 253, 336 

factorial domain, 375 
Fermat, 6 

curve, 124, 202 
quotient, 125, 373 
Last Theorem, iii, 6, 34, 157, 372 

fiber, 103, 247 
field of definition of a point, 230, 233 

on a complete curve, 256 
field of rational functions, 5, 44 
finitely generated algebra, 65, 76 
finitely generated module, or ideal, 20, 

148, 342 
Frobenius, 114 

absolute, 339 
automorphism in Gal(F9/Fg), 349, 
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element at P , 353, 358 
endomorphism of a curve, 348, 349 
fixed points of, 348, 350 
n-th morphism, 345 
substitution, 114, 120, 353 

function field, 241 
function field of transcendence degree 

n, 183 
functional equation, 

of a ^-function, 274 
of a zeta-function, 288 

fundamental group, 157 

Galois, 8 
extension, 377 
group, 377 

Galois action, 
on the affme plane, 230 
on a complete curve, 255 
on divisors, 350 
onfc(X), 253 
on the projective plane, 234 

Galois closure, 245 
Galois cover, 121, 351, 352, 358 
Galois module, 323 

morphism of, 323 
Galois representation, 365, 366 
Gauss, 6 

Conjecture, 166, 188 
Lemma, 47, 375 
sum, 294, 296 

genus, 37, 282, 285, 292, 302, 311, 323, 
326, 327, 331 
arithmetic, 331 
geometric, 327 

genus formula, 
for plane curves, 327 
for hyperelliptic curves, 332, 337 

good reduction, 363 
greatest common divisor ideal, 126 

Harnack's Theorem, 37, 53 
height of a prime, 28 

Hilbert, 7 
Basis Theorem, 76 
Nullstellensatz, 47 

homogeneous polynomial, 199 
homothety, 203 
hyperelliptic curve, 52, 186, 203, 247, 

292, 332, 337 
involution, 124 

hyperplane, 196, 198 

ideal-norm map, 151 
inertia group, 117, 369 
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integral 

basis, 23, 148 
closure, 5, 13, 54, 63, 342 
element, 9, 10 
extension, 10, 127 

integrally closed, 13, 54, 56. 91, 127, 
229 

intersection, 
divisor, 262 
multiplicity, 83, 224, 262 
transverse, 83 

invariant element, 324 
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element, 375 
ideal, 130 

jacobian variety, 363 
Jacobi sum, 294 

Kummer, 6 
extension, 109 

Krull, 28 
dimension, 28, 63 
topology, 379 

^-adic integers, 381 
Laurent series, 278, 310 

expansion, 308 
least common multiple ideal, 126 
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line at infinity, 201, 327 
local ring, 61 
localization of rings, 51, 61 
localization of modules, 73 
locally free module, 148 
logarithm, 277 

minimal polynomial over a field, 9, 10 
Minkowski's bound, 166 
modules of fractions, 72 
monogene, monogeneic, 105 
monoid, 158 
Mordell's conjecture, 323 
morphism, 

of affine plane curves, 48, 
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of nonsingular complete curves, 245 
of projective curves, 208, 246 
separable, 245, 333, 347 
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multiplicative set, 57 

Nakayama's Lemma (also called 
Lemma of Krull-Azumaya), 70, 81 

Noether, 5 
Normalization Lemma, 220, 343 
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module, 24 

nonsingular, 
affine curve, 125 
affine plane curve, 51 
complete curve, 184, 241 
point, 87, 194, 202 
projective plane curve, 202, 217 

norm, 
of a divisor, 264 
of an element, 133 
of an ideal, 149, 343 

normal extension, 376 
number field, 5 
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open cover, 79 

order, 
of an ideal at a prime, 92 
of a zero or a pole, 184 
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oval, 36, 53 

p-adic numbers, 176 
parametrization of a curve, 67 
perfect field, 33, 340 , 376 
Picard group, 259, 287 
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pole of a function, 214, 241, 246, 263, 

305 
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admitting addition, 278 
admitting multiplication, 278 

presheaf, 79 
primary ideal, 130 
primitive polynomial, 47, 375 
prime 
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inert, 118 
split completely, 118 
totally ramified, 118 

principal ideal, 20 
principal ideal domain, 3 
principal units, 278 
product formula, 

for number fields, 175 
for k[x], 177 
for function fields, 179, 263 

product of ideals, 17, 158 
profinite group, 380, 
profinite completion of Z, 381 
projection map, 

affine, 348 
from a point, 206 
projective, 206, 246 

projective limit, 380 
projective 

coordinates, 197 
line, 184, 193, 195, 280, 305, 334 
plane, space, 194, 195 
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transformation, 203, 269 
pull-back of divisiors, 267 
purely inseparable, 376 

quotient, 
curve, 126, 352 
map, 123, 124 

quotient topology, 121 
quadratic function field, 11, 26, 56, 188, 

189 
quadratic number field, 7, 11, 100, 189 

radical of an ideal, 130 
ramification index, 

for a ring extension, 94, 95, 
for a morphism of curves, 95, 105, 

248, 333, 338 
ramification group, 129 
ramification locus, 102 
ramification point, 102 
ramified point, 248, 338 
ramified prime, 101, 108, 167 
rank, 23, 81 
rational function, 44, 184 

constant, 67, 214 
defined at a point, 57, 61, 214, 241 
domain of, 214 
pole of, 62, 184, 214, 241 
value of, 214 
zero of, 184, 241 

rational point on a curve, 257 
rationality of the zeta-function, 282, 

285 
reduced ring, 130 
regular extension, 241 
regular local ring, 70 
regular point, 329 
regular prime, 190 
regulator, 

of a number field, 275, 299 
of a ring of functions, 299 

residual degree, 94, 248 
restriction map, 79, 243 

resultant, 41, 42, 83, 132 
of homogeneous polynomials, 221 

Riemann, 266 
Theorem, 311 
surface, 63 
^-function, see zeta-function 

Riemann hypothesis, 
for number fields, 274, 
for curves, 273, 283, 287, 288, 290, 

291, 292, 302, 354 
Riemann-Hurwitz formula, 333 
Riemann-Roch Theorem, 266, 285, 

288, 296, 299, 316, 321, 326, 330 
for singular curves, 331, 358 

ring of algebraic functions, 43 
ring of continuous functions, 39, 45, 

121 
ring of fractions, 58 
ring of integers, 13 
ring of invariants, 120 
ring of rational functions, 184, 215, 241 
ring with finite quotients, 160 
ringed space, 249 
roots of unity, 112, 275, 281 

scheme, 79, 244, 249 
separable extension, 31, 376 
separable morphism, 245, 333, 347 
sequence, 24 

exact, 24, 34 
short exact, 24 

Serre duality, 316 
sheaf, 79, 243, 315, 

cohomology, 315 
morphism of, 250 

simple extension, 105 
singular point, 51, 83 
spectrum of a ring, 50 
squarefree, 11 
stabilizer subgroup, 232 
standardized absolute value, 170 
Stickelberger's criterion, 154 
sum of ideals, 17 
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tangent line, 
to an affine curve, 51 
to a projective curve, 208, 209 

Tate module, 366 
topological case, 39, 48 
topological field, 10 
torsion free module, 23 
torsion module, 22 
trace form, 138 
trace map, 134 
transcendence degree, 183 
triangle inequality, 168, 172 
truncated Laurent expansion, 308 
twist, 252 

point, 248 
prime, 101 

valuation, 169, 217 
discrete, 169 
extension, 190 
P-adic, 170 
trivial, 190 
trivial on fc, 183, 

value of a function, 46, 61, 186 

Weil's bound, see Riemann hypothesis 

Zariski, 40 
topology, 40, 82, 199 

zero of a function, 263 
zeta-function, 

of Dedekind, 273, 300, 301 
of a Dedekind domain with finite 

quotients, 276, 279 
of Riemann, 274 
of a curve, 272, 279, 284 

unique factorization into irreducible 
elements, 375 

unique factorization of ideals, 17, 18, 
88, 90, 91, 91, 126, 276 

units, 189, 298, 299 
unramified, 

extension, 101, 109, 129 
morphism, 338 
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