Finite Group
 Theory

I. Martin Isaacs

Graduate Studies
 in Mathematics

Volume 92

Finite Group Theory

This page intentionally left blank

Finite Group Theory

I. Martin Isaacs

Graduate Studies
in Mathematics
Volume 92

American Mathematical Society
Providence, Rhode Island

Editorial Board

David Cox (Chair)
Steven G. Krantz
Rafe Mazzeo
Martin Scharlemann

2000 Mathematics Subject Classification. Primary 20B15, 20B20, 20D06, 20D10, 20D15, 20D20, 20D25, 20D35, 20D45, 20E22, 20E36.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-92

Library of Congress Cataloging-in-Publication Data
Isaacs, I. Martin, 1940-
Finite group theory / I. Martin Isaacs.
p. cm. - (Graduate studies in mathematics ; v. 92)
Includes index.
ISBN 978-0-8218-4344-4 (alk. paper)
1. Finite groups. 2. Group theory. I. Title.

QA177.I835 2008
$512^{\prime} .23-\mathrm{dc} 22$
2008011388

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(C) 2008 by the American Mathematical Society. All rights reserved.

Reprinted with corrections by the American Mathematical Society, 2011.
The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

To Deborah

This page intentionally left blank

Contents

Preface ix
Chapter 1. Sylow Theory 1
Chapter 2. Subnormality 45
Chapter 3. Split Extensions 65
Chapter 4. Commutators 113
Chapter 5. Transfer 147
Chapter 6. Frobenius Actions 177
Chapter 7. The Thompson Subgroup 201
Chapter 8. Permutation Groups 223
Chapter 9. More on Subnormality 271
Chapter 10. More Transfer Theory 295
Appendix: The Basics 325
Index 345
Errata 351

This page intentionally left blank

Preface

This book is a somewhat expanded version of a graduate course in finite group theory that I often teach at the University of Wisconsin. I offer this course in order to share what I consider to be a beautiful subject with as many people as possible, and also to provide the solid background in pure group theory that my doctoral students need to carry out their thesis work in representation theory.

The focus of group theory research has changed profoundly in recent decades. Starting near the beginning of the 20th century with the work of W. Burnside, the major problem was to find and classify the finite simple groups, and indeed, many of the most significant restults in pure group theory and in representation theory were directly, or at least peripherally, related to this goal. The simple-group classification now appears to be complete, and current research has shifted to other aspects of finite group theory including permutation groups, p-groups and especially, representation theory.

It is certainly no less essential in this post-classification period that group-theory researchers, whatever their subspecialty, should have a mastery of the classical techniques and results, and so without attempting to be encyclopedic, I have included much of that material here. But my choice of topics was largely determined by my primary goal in writing this book, which was to convey to readers my feeling for the beauty and elegance of finite group theory.

Given its origin, this book should certainly be suitable as a text for a graduate course like mine. But I have tried to write it so that readers would also be comfortable using it for independent study, and for that reason, I have tried to preserve some of the informal flavor of my classroom. I have tried to keep the proofs as short and clean as possible, but without omitting
details, and indeed, in some of the more difficult material, my arguments are simpler than can be found in print elsewhere. Finally, since I firmly believe that one cannot learn mathematics without doing it, I have included a large number of problems, many of which are far from routine.

Some of the material here has rarely, if ever, appeared previously in books. Just in the first few chapters, for example, we offer Zenkov's marvelous theorem about intersections of abelian subgroups, Wielandt's "zipper lemma" in subnormality theory and a proof of Horosevskii's theorem that the order of a group automorphism can never exceed the order of the group. Later chapters include many more advanced topics that are hard or impossible to find elsewhere.

Most of the students who attend my group-theory course are second-year graduate students, with a substantial minority of first-year students, and an occasional well-prepared undergraduate. Almost all of these people had previously been exposed to a standard first-year graduate abstract algebra course covering the basics of groups, rings and fields. I expect that most readers of this book will have a similar background, and so I have decided not to begin at the beginning.

Most of my readers (like my students) will have previously seen basic group theory, so I wanted to avoid repeating that material and to start with something more exciting: Sylow theory. But I recognize that my audience is not homogeneous, and some readers will have gaps in their preparation, so I have included an appendix that contains most of the assumed material in a fairly condensed form. On the other hand, I expect that many in my audience will already know the Sylow theorems, but I am confident that even these well-prepared readers will find material that is new to them within the first few sections.

My semester-long graduate course at Wisconsin covers most of the first seven chapters of this book, starting with the Sylow theorems and culminating with a purely group-theoretic proof of Burnside's famous $p^{a} q^{b_{-}}$ theorem. Some of the topics along the way are subnormality theory, the Schur-Zassenhaus theorem, transfer theory, coprime group actions, Frobenius groups, and the normal p-complement theorems of Frobenius and of Thompson. The last three chapters cover material for which I never have time in class. Chapter 8 includes a proof of the simplicity of the groups $P S L(n, q)$, and also some graph-theoretic techniques for studying subdegrees of primitive and nonprimitive permutation groups. Subnormality theory is revisited in Chapter 9, which includes Wielandt's beautiful automorphism tower theorem and the Thompson-Wielandt theorem related to the Sims
conjecture. Finally, Chapter 10 presents some advanced topics in transfer theory, including Yoshida's theorem and the so-called "principal ideal theorem".

Finally, I thank my many students and colleagues who have contributed ideas, suggestions and corrections while this book was being written. In particular, I mention that the comments of Yakov Berkovich and Gabriel Navarro were invaluable and very much appreciated.

This page intentionally left blank

Index

abelian Hall subgroup and π-length, 94
abelian normal subgroups all cyclic, 189
abelian Sylow subgroup intersection, 38
action, 1
action on cosets, 3,148
action on subspaces of vector space, $228 f f$
action on right transversal, 148
action via automorphisms, 68
action, Frobenius, 177 ff
action, semiregular, 177
actions fixing prime order elements, 141ff
additive commutator in ring, 125
adjoint (classical) of matrix, 321
admit (of action), 131
Alperin, J., 55, 323
alternating group, 34
alternating group, definition, 326
alternating group, Schur multiplier of, 152
alternating group, simplicity of, 250
arrows in transitive action, 262
augmentation ideal, 315
augmentation map, 314
automorphism, definition, 334
automorphism of symmetric group, 33, 250
automorphism tower, 278
automorphism, order of, 70
axiom of choice, 333

Baer theorem, 55
Baer trick, 142
bar convention, 23
Bartels theorem, 290
base group of wreath product, 73
basis for free abelian group, 315
Bender, H., 31, 217, 271
Berkovich, Y., 86
binomial coefficient, 9
block (of action), 237
Bochert theorem, 246ff
Brodkey theorem, 38, 71, 74
Burnside, book of, 181, 217
Burnside orbit count, 7
Burnside $p^{a} q^{b}$-theorem, 216ff
Burnside p-nilpotence theorem, 159
Burnside theorem, prime degree action, 240
Burnside, W., 30

Cameron, P., 249, 285
canonical homomorphism, 338
Carter subgroup, 91
Cauchy theorem, 8, 10
Cauchy-Frobenius orbit count, 7
center of group, 2, 334
central extension, 151
central prime order elements, 174
central series, 20, 115
central subgroup, transfer to, 154
centralizer, definition, 339
Cermak-Delgado subgroup, 43
chain stabilizer, 137
character theory, $53,59,147,182,216-217$
character, permutation, 236
characteristic series, π-separable, 92
characteristic subgroup, 11
characteristic subgroup, definition, 335
characteristically simple group, 277
Chermak-Delgado theorem, 41
class 2 group, 122, 142
class (conjugacy), 4
class equation, 5
class (nilpotence), 22, 116, 119
class size, 6
class sizes, common divisor graph, 268
class sizes, number of, 128
class sizes, smallest, 128
classical adjoint of matrix, 321
collection of commutators, 120ff
common divisor graph on class sizes, 268
common-divisor graph, components, 265 ff
commutator, 40 , 48, 113ff
commutator, additive, 125
commutator collection, 120 ff
commutator, multiple, 115
commutator subgroup, 80 see also derived subgroup
commutators in coprime action, 138
complement, 85
complement for normal subgroup, 65
complete group, 279
component of group, $273 \mathrm{ff}, 287$ see also layer
components of common-divisor graph, $265 f f$
composition factor, 29
composition series, 29
composition series of solvable group, 84
conjugacy class, 4 see also class
conjugacy of complements, 82
conjugacy of Sylow subgroups, 14
conjugates of subgroup, 6
conjugation action, 2
conjugation action on normal subgroup, 230
connected graph, 260
control of fusion, 158,167
control of transfer, $167,295 \mathrm{ff}$
coprime action, 96 ff
coprime action on abelian group, 140
coprime action, orbit sizes of, 102 ff
coprime action, commutators in, 138
coprime orbit sizes, 102-105
core of cyclic subgroup, 63
core, 3
corefree subgroup, 285
correspondence theorem, 340
coset, 331
coset action, 3
coset, double, 6, 304
crossed homomorphism, 76, 114
cyclic extension, 107
cyclic factor group, 118
cyclic group automorphism, 334
cyclic group, subgroups of, 330
cyclic subgroup, core of, 63
cyclic Sylow subgroups, 159ff
Dedekind lemma, 328
degree, 225
depth, subnormal, 45
derived length, 82
derived length and nilpotence class, 128
derived length, large, 146
derived series, 80
derived subgroup, 80,113
derived subgroup, finiteness, 155
derived subgroup, noncommutators in, 125
development, 15
Dietzmann theorem, 156
dihedral group, 55ff, 120, 189, 196
dihedral group, construction, 70
direct diamond, 329
direct product, 69 ff
direct product, center of, 25
direct product, definition, 342
Doerk, K., 86
dot action on right transversal, 148
double coset, 6, 304
double transitivity, 225
E, 274 see also layer
elementary abelian group, $27,82,202,298$, 310
Euler totient function, $\varphi, 334$
even permutation, 34,326
existence of Sylow subgroup, 8, 9, 12
exponent, 116
extension, 66
external direct product, 342
extraspecial p-group, 123
F, 25 see also Fitting subgroup
$\mathbf{F}^{*}, 271$ see also generalized Fitting subgroup
factor group, 337
faithful action, 2, 40, 133, 233
faithful action on normal subgroup, 145
faithful orbit (existence of), 74
Feit-Thompson theorem, 30, 75, 97
Feit, W., 30
finite index center, Schur theorem, 155
Fischer-Greiss monster, 31
Fitting subgroup, 25, 46, 53, 271
Fitting subgroup and subnormality, 47
Fitting subgroup of solvable group, 86
Fitting theorem, coprime action, 140
fixed points come from fixed points, 101
fixed-point subgroup, 96
focal subgroup theorem, 165
Frattini argument, 15
Frattini subgroup, 27, 95, 282, 330
Frattini subgroup of p-group, 27, 117
free abelian group, 315
Frobenius action, 177 ff, 232
Frobenius complement, 26, 179
Frobenius complement, nonsolvable, 181
Frobenius complement, odd order, 185, 193

Frobenius complement, properties, 186ff, 193
Frobenius group, 181
Frobenius kernel, 179
Frobenius kernel, nilpotence of, 196ff, 201
Frobenius kernel, nonabelian, 180
Frobenius kernel, solvable, 196
Frobenius p-nilpotence theorem, 171ff, 197
Frobenius theorem on kernel existence, 181, 186
Frobenius theorem, permutations, 183
Frobenius, G., 216
fundamental counting principle, 5
Furtwängler, P., 313
fused classes, 100, 158
fusion and p-nilpotence, 170
fusion, control of, 158
general linear group, 30, 203ff, 228
general linear group, order of, 204
general linear group, Sylow subgroup of, 205
generalized Brodkey theorem, 39
generalized dihedral group, 57, 70
generalized Fitting subgroup, 271ff, 276, 281
generalized quaternion group, $74,110,120$, $153,189,196,209$
generating set of subgroup, 329
glasses, 96
$G L, 30$ see also general linear group
Glauberman $\mathbf{Z}(J)$-theorem, 217
Glauberman lemma, 97
Glauberman, G., 31, 217
global property, 59
Goldschmidt, D., 31, 55, 217
good theorem, 2
graph and transpositions, 241
graph, common divisor, 265 ff
graphs and primitivity, 260
graphs and orbitals, 259
greed, 46
group, definition, 325
group of order $120,18,256$
group of order 21952, 17
group of order 24, 33
group of order 8,190
group of order $p^{2} q^{2}, 37$
group of order $p^{2} q, 32$
group of order $p^{3} q, 33$
group of order $p^{a} q, 37$
group of order $p q, 32$
group of order pqr, 38
group ring, 313
groups of small order, 38
half transitivity, 232ff

Hall C-theorem, 87
Hall D-theorem, 90
Hall E-theorem, 86
Hall E-theorem converse, 87
Hall π-subgroup, 86
Hall π-subgroups, nonisomorphic, 90
Hall subgroup, 12
Hall subgroup in solvable group, 86
Hall subgroup in π-separable group, 93
Hall subgroup, conjugacy, 87
Hall subgroup, normal, 75
Hall-Higman Lemma 1.2.3, 93
Hall-Wielandt transfer theorem, 167, 297
Hall-Witt identity, 125
Hall, P., 86, 120, 134
Hartley-Turull theorem, 102
Hawkes, T., 86
Higman, G., 196
Higman-Sims group, 257
Hochschild, G., 313
homomorphism, definition, 337
homomorphism theorem, 339
homomorphism, canonical, 338
Horosevskii theorem, 70
Huppert theorem on metacyclic Sylows, 308
imprimitive action, 237
induced action on factor group, 132
infinite p-group, 8,19
inner automorphism (definition), 335
internal direct product, 342
intersection of abelian subgroups, 61
intersection of subnormal subgroups, 47
intersection of Sylow subgroups, 37-39
invariant classes, 100
invariant cosets, 101
invariant Sylow subgroups, 96
involution, 55
involutions, nonconjugate, 57
Ishikawa, K., 128
isomorphism, 333
Iwasawa lemma, 252
J, 198 see also Thompson subgroup
Jacobi identity, 125
Janko group, 164
join of subgroups, 42
join of subnormal subgroups, 47 ff
Jordan set, 243
Jordan theorem, 241ff
Jordan-Hölder theorem, 29, 84
Jordan, C., 227
Kegel, O., 294
kernel of homomorphism, definition, 338
kernel of action, 2
kernel of crossed homomorphism, 76
kernel of transfer, 165
Klein group, 34, 46, 56
Kuo, T., 323
Lagrange theorem, 331
Lagrange theorem, converse, 9, 24
lattice, 42,47
layer, 274ff, 282, 287
left transversal, 77
Lie ring, 126
linear representation, 147
local subgroup, 58
local subgroup and homomorphism, 59-60
local-to-global theorem, 59
lower central series, 116, 127, 281
lower triangular matrix, 205
Lucchini theorem, 63
Lyons, R., 55
Mackey transfer theorem, 304
magic eyeglasses, 96
Mann subgroup, 128
Manning theorem and 3-transitivity, 264
Maschke theorem, 309
Mathieu group, 31, 226ff, 256ff
matrix unit, 253
Matsuyama, H., 31, 55, 217
maximal class p-group, 120
maximal subgroup, 25,27
maximal subgroup, definition, 329
maximal subgroup of solvable group, 84, 91
maximal subgroup, nilpotent, 168, 209
McKay, J., 8
measure, Chermak-Delgado, 41ff
metacyclic group, 160, 308ff
minimal-normal subgroup, $48,54,82,90$, 275
minimal-simple group, 61
monster simple group, 31
multiple commutator, 115
multiple transitivity, 225, 264
multiple transitivity and primitivity, 240
N -group, 61
n ! theorem, 4
Navarro, G., 164
Neumann, P., 7
nilpotence and subnormality, 47
nilpotence class, 22, 116, 119, 296
nilpotence class and derived length, 128
nilpotence class of Mann subgroup, 129
nilpotent factor group, 27
nilpotent group, 20, 24
nilpotent injector, 91
nilpotent joins, Baer theorem, 55
nilpotent maximal subgroup, 168, 209
nilpotent normal subgroup, 26
nonabelian simple group, 29
normal p-complement, 159, 164
normal abelian subgroups cyclic, 189
normal closure, 51
normal Hall subgroup and splitting, 75
normal series, 20, 80
normal subgroup, definition, 336
normal subgroup of primitive group, 238
normal-J theorem, 210
normal- P theorem, 207
normalizer, 3, 336
normalizer of subnormal subgroup, 48
normalizers grow, 22
O'Brien, E., 19
odd permutation, 34, 326
odd-order theorem, 30 see also
Feit-Thompson theorem
Ω_{r} of p-group, 120
Ω_{1} of class $2 p$-group, 122
orbit, 4, 223
orbit size, 5
orbits, number of, 7
orbit sizes in coprime actions, 102
orbital, 257 see also suborbit
orbits of subgroup, 236
order of automorphism, 70
$P \times Q$-theorem, 139
$P \times Q$-theorem, strong form, 144
$p^{a} q^{b}$ theorem, 30, 217 ff
p-central element, 220
p-complement, 85, 88
p-complement, normal, 159
p-cycle in primitive group, 245
p-group, 8
p-group of class 2, 122
p-group of maximal class, 120
p-group, center of, 20
p-group, elementary abelian, 27 see also elementary abelian
p-group, infinite, 8
p-group, nilpotence of, 21
p-group, omega subgroup of, 120
p-group, subgroups of, 24
p-group with unique minimal subgroup, 189
p-groups, number of, 19
p-local subgroup, 58
p-local subgroup of p-solvable group, 140
p-local subgroups and p-nilpotence, 171
p-nilpotence and fusion, 170
p-nilpotent group, 159 see also normal p-complement
p-solvable group, $93,95,107,140,146,207$, 210
paired orbital, 257, 262
partitioned group, 186, 195, 232

Passman, D., 232, 240
path connected graph, 260
perfect group, 151
permutable subgroups, 6,49
permutation character, 7, 236
permutation group, 223ff
permutation isomorphism, 5, 103, 224
permutation representation, 2, 223
Pettet, M., 278
$\Phi, 27$ see also Frattini subgroup
PGL, 205
π-group, 12
π-length, 94
π-separable group, 91
π-solvable group, 93
point stabilizer, 3
point stabilizer, primitive group, 239
pointwise stabilizer of set, 242
Praeger, C., 106, 249, 265, 285
pretransfer map, 149
prime degree action, Burnside theorem, 240
prime index subgroup, $6,18,85$
prime order elements central, 174
prime subdegree, 269
primitive action, 237 ff
primitive group containing p-cycle, 241, 242, 245
primitive group, simplicity criterion, 252
primitive solvable group, 248
primitive subgroup of symmetric group, 246 ff
primitivity and multiple transitivity, 240
principal ideal theorem (of transfer), 313
pro- p-group, 18
product of subgroups, $6,49,327,336$
projective general linear group, 205
projective special linear group, 30 see also PSL
PSL, 30, 205
PSL, simplicity, 251ff
quasinormal subgroup, 50
quasiquaternion, 123
quasisimple group, 272
quaternion group, 74 see also generalized quaternion group
quotient group, 337
rank of abelian p-group, 203
regular p-group, 297, 307
regular action, 2,225
regular orbit, existence, 71
regular subgroup of permutation group, 235
regular wreath product, 73
repeated commutator, 132 ff
representation, 147
representation group (Schur), 151, 272
representation, permutation, 2
right transversal, 77
right transversal, dot action on, 148
Saxl, J., 249, 285
Schenkman theorem, 283
Schenkman, E., 278
Schur multiplier, 123, 151, 153, 272
Schur representation group, 151, 272
Schur theorem, finite index center, 155
Schur-Zassenhaus theorem, 75 ff
second center, 20
Seitz, G., 249, 285
self-centralizing subgroup, 129
self-normalizing Sylow subgroup, 164
semidihedral group, $74,120,189,196$
semidihedral group, Schur multiplier, 153
semidirect product, applications of, 70
semidirect product, existence of, 72
semiregular action, 177, 225
semisimple group, 274
series of subgroups, 20
setwise stabilizer of set, 242
sharp multiple transitivity, 226
sharp transitivity, 225
simple group, nonabelian, 29
simple group classification, 30
simple group, order of, 163
simple group, Sylow 2-subgroup of, 162
simple groups of small order, 35
Sims conjecture, 249, 285
SL, 30, 110
SL, order of, 204
socle, 48,54
solvable group, $30,80 \mathrm{ff}$
solvable group, Fitting subbgroup, 86
solvable group, maximal subgroup, 84
solvable minimal normal subgroup, 82
solvable primitive group, 248
special linear group, 30 see also SL
split extension, 65 ff
sporadic simple group, 30
stabilizer of chain, 137
stabilizer of point, 3
strongly conjugate subgroups, 54, 289ff
strongly Jordan set, 243
subdegree, 259
subdegrees in imprimitive group, 265
subdegrees in primitive group, 261ff
subnormal π-subgroup, 53
subnormal closure, 289ff
subnormal core, 294
subnormal depth, 45
subnormal nilpotent subgroup, 47 subnormal partition, 195
subnormal series, π-separable, 92
subnormal subgroup, 45
subnormality, 45ff, 271ff
suborbit, 257 ff
supersolvable group, 85
supersolvable group, Mann subgroup of, 131
Suzuki, M., 55
Suzuki group, 163
Sylow p-subgroup of symmetric group, 299
Sylow C-theorem, 14
Sylow counting theorem, 16
Sylow D-theorem, 15
Sylow E-theorem, 9
Sylow subgroup, 8
Sylow subgroup of Frobenius complement, 188, 193
Sylow subgroup of general linear group, 205
Sylow subgroup, cyclic, 159 ff
Sylow subgroups, intersection, 10, 16, 38
Sylow subgroups, number of, 15-16
Sylow subgroups, set of, 10, 14
Sylow system, 90
Sylow theorem, via Cauchy, 8, 12
symmetric group, 4, 325
symmetric group automorphism, 250
symmetric group, normal subgroup of, 251
symmetric group, primitive subgroup of, 246

Tate's theorem, 168
Taussky-Todd, O., 196
the, 11, 334
Thompson $P \times Q$-theorem, 139
Thompson p-nilpotence theorem, 197, 201, 213
Thompson subgroup, 198, 201ff
Thompson theorem on Sims conjecture, $285 f f$
Thompson, J., 30, 61, 169, 217
Thompson's thesis, $179,196,201,214$
three subgroups lemma, 126
totient function, 334
transfer evaluation lemma, 153ff
transfer kernel, 165
transfer map, 149
transfer theory, 147 ff , 295ff
transfer to central subgroup, 154
transfer to derived subgroup, 313
transitive action, 7, 223
transitivity of transfer, 301
translate of subset in action, 237
transposition, 240, 326
transversal, 77 see also right transversal trivial block, 237
upper central series, 20
upper triangular matrix, 204

Verlagerung, 149
weakly closed subgroup, 163
weight of commutator, 127
Weiss theorem on subdegrees, 262
Wielandt automorphism tower theorem, 278
Wielandt solvability theorem, 88
Wielandt subgroup, 54
Wielandt zipper lemma, 50 ff
wreath product, 73, 124, 296
Yoshida theorem, 296
Yoshida, T., 167
Zassenhaus, H., 181
Zenkov theorem, 61
zipper lemma, 50

Errata

1) Page 32. Two lines above Theorem 1.31 , near the end of the line, it now reads " $G=\langle p q\rangle$ ". This should be " $G=\langle g\rangle$ ".
2) Page 145. In the Note following the Hint for Problem 4D.1, the line now ends "is is". This should read "is".
3) Page 157. In Problem 5B.1, second line, it now reads: "that $g^{t} \in P^{\prime}$ for some". Delete the dash on the P. It should read "that $g^{t} \in P$ for some".
4) Page 232. In line 4, we see a sentence beginning "if". This, of course, should be "If".
5) Page 249. In Problem 8B.10, in the second line, change "than" to "that".
6) Page 256. In the hint to Problem 8 C .2 , it now reads " $P \in \operatorname{Syl}_{1} 1 G$ ". It should read " $P \in \operatorname{Syl}_{11} G$ ".
7) Page 329. In the proof of Corollary $X .4$, at start of line 7 of the proof, it now reads " $\theta(X) H=X \theta(U)$ ". It should read " $\theta(X) H=H \theta(X)$ ".
8) Page 336. In line 2, Change " G " to " X ".
9) Page 340. In line 2, near start of line, it now reads " $x \in H$ ". It should read " $x \in N$ ".
10) Page 341. Near the start of line 15 , there is a missing closed parenthesis. The start of the line now reads " $X=\theta^{-1}(\theta(X), " \ldots$. It should read " $X=\theta^{-1}(\theta(X)), " \ldots$.

This page intentionally left blank

Titles in This Series

97 David C. Ullrich, Complex made simple, 2008
96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008
95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008
94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O, 2008
93 Peter W. Michor, Topics in differential geometry, 2008
92 I. Martin Isaacs, Finite group theory, 2008
91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008
90 Larry J. Gerstein, Basic quadratic forms, 2008
89 Anthony Bonato, A course on the web graph, 2008
88 Nathanial P. Brown and Narutaka Ozawa, C*-algebras and finite-dimensional approximations, 2008
87 Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, 2007
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007
85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007
83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007
82 Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash-Moser theorem (translated by Stephen S. Wilson), 2007
81 V. V. Prasolov, Elements of homology theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007
78 Harry Dym, Linear algebra in action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, 2006
76 Michael E. Taylor, Measure theory and integration, 2006
75 Peter D. Miller, Applied asymptotic analysis, 2006
74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006
73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006
72 R. J. Williams, Introduction the the mathematics of finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006
70 Seán Dineen, Probability theory in finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005
67 T.Y. Lam, Introduction to quadratic forms over fields, 2004
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004
65 S. Ramanan, Global calculus, 2004
64 A. A. Kirillov, Lectures on the orbit method, 2004
63 Steven Dale Cutkosky, Resolution of singularities, 2004
62 T. W. Körner, A companion to analysis: A second first and first second course in analysis, 2004

61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003
58 Cédric Villani, Topics in optimal transportation, 2003
57 Robert Plato, Concise numerical mathematics, 2003
56 E. B. Vinberg, A course in algebra, 2003 geometry and physics, 2002
Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002
Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002

John R. Harper, Secondary cohomology operations, 2002
Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002
A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002
46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002
Inder K. Rana, An introduction to measure and integration, second edition, 2002
Jim Agler and John E. M ${ }^{\mathbf{c}}$ Carthy, Pick interpolation and Hilbert function spaces, 2002
N. V. Krylov, Introduction to the theory of random processes, 2002

Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002
Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002
40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006
39 Larry C. Grove, Classical groups and geometric algebra, 2002
38 Elton P. Hsu, Stochastic analysis on manifolds, 2002
37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001
Martin Schechter, Principles of functional analysis, second edition, 2002
James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001
Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001
33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001
32 Robert G. Bartle, A modern theory of integration, 2001
31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001
J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001

Javier Duoandikoetxea, Fourier analysis, 2001
28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000
27 Thierry Aubin, A course in differential geometry, 2001
26 Rolf Berndt, An introduction to symplectic geometry, 2001

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur-Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal p-complement theorem.

Topics that seldom (or never) appear in books are also covered.These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the "principal ideal theorem" of transfer theory and many smaller results that are not very well known.
Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it.
Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003-2005.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-92

