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Preface

Classical differential geometry is the approach to geometry that takes full
advantage of the introduction of numerical coordinates into a geometric
space. This use of coordinates in geometry was the essential insight of René
Descartes that allowed the invention of analytic geometry and paved the way
for modern differential geometry. The basic object in differential geometry
(and differential topology) is the smooth manifold. This is a topological
space on which a sufficiently nice family of coordinate systems or “charts”
is defined. The charts consist of locally defined n-tuples of functions. These
functions should be sufficiently independent of each other so as to allow
each point in their common domain to be specified by the values of these
functions. One may start with a topological space and add charts which
are compatible with the topology or the charts themselves can generate the
topology. We take the latter approach. The charts must also be compatible
with each other so that changes of coordinates are always smooth maps.
Depending on what type of geometry is to be studied, extra structure is
assumed such as a distinguished group of symmetries, a distinguished “ten-
sor” such as a metric tensor or symplectic form or the very basic geometric
object known as a connection. Often we find an interplay among many such
elements of structure.

Modern differential geometers have learned to present much of the sub-
ject without constant direct reference to locally defined objects that depend
on a choice of coordinates. This is called the “invariant” or “coordinate
free” approach to differential geometry. The only way to really see exactly
what this all means is by diving in and learning the subject.

The relationship between geometry and the physical world is fundamen-
tal on many levels. Geometry (especially differential geometry) clarifies,
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xii Preface

codifies and then generalizes ideas arising from our intuitions about certain
aspects of our world. Some of these aspects are those that we think of as
forming the spatiotemporal background of our activities, while other aspects
derive from our experience with objects that have “smooth” surfaces. The
Earth is both a surface and a “lived-in space”, and so the prefix “geo” in the
word geometry is doubly appropriate. Differential geometry is also an appro-
priate mathematical setting for the study of what we classically conceive of
as continuous physical phenomena such as fluids and electromagnetic fields.

Manifolds have dimension. The surface of the Earth is two-dimensional,
while the configuration space of a mechanical system is a manifold which
may easily have a very high dimension. Stretching the imagination further
we can conceive of each possible field configuration for some classical field
as being an abstract point in an infinite-dimensional manifold.

The physicists are interested in geometry because they want to under-
stand the way the physical world is in “actuality”. But there is also a
discovered “logical world” of pure geometry that is in some sense a part
of reality too. This is the reality which Roger Penrose calls the Platonic
world.1 Thus the mathematicians are interested in the way worlds could be
in principle and geometers are interested in what might be called “possible
geometric worlds”. Since the inspiration for what we find interesting has its
roots in our experience, even the abstract geometries that we study retain
a certain physicality. From this point of view, the intuition that guides the
pure geometer is fruitfully enhanced by an explicit familiarity with the way
geometry plays a role in physical theory.

Knowledge of differential geometry is common among physicists thanks
to the success of Einstein’s highly geometric theory of gravitation and also
because of the discovery of the differential geometric underpinnings of mod-
ern gauge theory2 and string theory. It is interesting to note that the gauge
field concept was introduced into physics within just a few years of the time
that the notion of a connection on a fiber bundle (of which a gauge field is a
special case) was making its appearance in mathematics. Perhaps the most
exciting, as well as challenging, piece of mathematical physics to come along
in a while is string theory mentioned above.

The usefulness of differential geometric ideas for physics is also apparent
in the conceptual payoff enjoyed when classical mechanics is reformulated
in the language of differential geometry. Mathematically, we are led to the
subjects of symplectic geometry and Poisson geometry. The applicability
of differential geometry is not limited to physics. Differential geometry is

1Penrose seems to take this Platonic world rather literally giving it a great deal of ontological
weight as it were.

2The notion of a connection on a fiber bundle and the notion of a gauge field are essentially
identical concepts discovered independently by mathematicians and physicists.
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also of use in engineering. For example, there is the increasingly popular
differential geometric approach to control theory.

Chap. 1Chap. 1

Chap. 4Chap. 4

Chap. 5Chap. 5

Chap. 6Chap. 6

Chap. 7Chap. 7

Chap. 8Chap. 8

Chap. 9Chap. 9

Chap. 10Chap. 10

Chap. 11Chap. 11

Chap. 12Chap. 12

Chap. 13Chap. 13

Chap. 3Chap. 3

Chap. 2Chap. 2

There is a bit more material in this book than can be comfortably cov-
ered in a two semester course. A course on manifold theory would include
Chapters 1, 2, 3, and then a selection of material from Chapters 5, 7, 8, 9,
10, and 11. A course in Riemannian geometry would review material from
the first three chapters and then cover at least Chapters 8 and 13. A more
leisurely course would also include Chapter 4 before getting into Chapter
13. The book need not be read in a strictly linear manner. We included
here a flow chart showing approximate chapter dependence. There are ex-
ercises throughout the text and problems at the end of each chapter. The
reader should at least read and think about every exercise. Some exercises
are rather easy and only serve to keep the reader alert. Other exercises take
a bit more thought.

Differential geometry is a huge field, and even if we had restricted our
attention to just manifold theory or Riemannian geometry, only a small
fragment of what might be addressed at this level could possibly be included.
In choosing what to include in this book, I was guided by personal interest
and, more importantly, by the limitations of my own understanding. While
preparing this book I used too many books and papers to list here but a few
that stand out as having been especially useful include [A-M-R], [Hicks],
[L1], [Lee, John], [ON1], [ON2], and [Poor].
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normal curvature, 158
normal field, 153

normal section, 159
nowhere vanishing, 277
null vector, 547

one-parameter subgroup, 202
open manifold, 50

open submanifold, 16
orbit, 41

map, 232
orientable manifold, 377

orientation cover, 380
orientation for a vector space, 353
orientation of a vector bundle, 375
oriented manifold, 377
orthogonal group, 195

orthonormal frame field, 165, 279
outward pointing, 381
overlap maps, 11

paracompact, 6, 645
parallel, 171

translation, 516
parallelizable, 278
parallels, 160
partial tangent map, 72

partition of unity, 30
path component, 8
path connected, 8
Pauli matrices, 203
piecewise smooth, 117

plaque, 482
point derivation, 61
point finite cover, 644
presheaf, 289

principal bundle, 293
atlas, 293
morphism, 297

principal curve, 159

principal frame field, 165
principal normal, 146
principal part, 56
principal vector, 158
product group, 191

product manifold, 20
projective plane, 18
projective space, 18
proper action, 231

proper map, 33
proper time, 550
property W, 133
pull-back, 92, 114, 322, 323

bundle, 268
vector bundle, 276

push-forward, 92, 115, 323

R-algebra, 660
radial geodesic, 571
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radially parallel, 517
rank, 78

of a linear map, 127
real projective space, 18
refinement, 6
reflexive, 654

reflexive module, 309
regular point, 74
regular submanifold, 46
regular value, 74
related vector fields, 93
Riemannian manifold, 337

Riemannian metric, 279

Sard’s theorem, 76
scalar product, 193, 331

space, 193
second fundamental form, 156

section, 87, 259
along a map, 269

sectional curvature, 557
self-avoiding, 42
semi-Euclidean motion., 339
semi-Riemannian, 337
semiorthogonal, 195

shape operator, 155
sharping, 334
sheaf, 289
short exact, 444
shuffle, 347
sign, 599
simple tensor, 656

simply connected, 37
single-slice chart, 46
singular homology, 402
singular point, 74
smooth functor, 283
smooth manifold, 15

smooth map, 22
smooth structure, 12
smoothly universal, 129
spacelike curve, 548
spacelike subspace, 588
spacelike vector, 547
sphere theorem, 622

spin-j, 250
spray, 544
stabilizer, 228
standard action, 250
standard transition maps, 274
stereographic projection, 17
Stiefel manifold, 51, 243

Stokes’ theorem, 396
straightening, 102
structural equations, 386
structure constants, 205
subgroup (Lie), 191

submanifold, 46
property, 46

submersion, 138
submodule, 651

summation convention, 5
support, 28, 101, 391
surface of revolution, 160
symplectic group, 196

tangent bundle, 81

tangent functor, 71, 84
tangent map, 67, 68, 81
tangent space, 58, 61, 65
tangent vector, 58, 60, 61
tautological bundle, 281

tensor (algebraic), 308
bundle, 319
derivation, 327
field, 320

map, 308
tensor product, 251, 319, 654, 655

bundle, 282
of tensor fields, 319

of tensor maps, 311
of tensors, 311

theorema egregium, 176
tidal operator, 558
time dependent vector field, 110

timelike curve, 548
timelike subspace, 588
timelike vector, 547
TM -valued tensor field, 320

top form, 378
topological manifold, 7
torsion (of curve), 150
total space, 258

totally geodesic, 582
totally umbilic, 162
transition maps, 261, 265

standard, 274
transitive, 228

transitive action, 41
transversality, 80
trivialization, 84, 260
typical fiber, 258

umbilic, 162

unitary group, 196
universal, 655

cover, 39
property, bilinear, 251, 654

VB-chart, 270

vector bundle, 270
morphism, 271

vector field, 87
along, 89
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vector subbundle, 271
velocity, 69
volume form, 378

weak embedding, 129

weakly embedded, 132
wedge product, 347
Whitney sum bundle, 276

zero section, 276
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Differential geometry began as the study of curves and 
surfaces using the methods of calculus. In time, the notions 
of curve and surface were generalized along with associ-
ated notions such as length, volume, and curvature. At the 
same time the topic has become closely allied with develop-
ments in topology. The basic object is a smooth manifold, 
to which some extra structure has been attached, such as a 
Riemannian metric, a symplectic form, a distinguished group 
of symmetries, or a connection on the tangent bundle.

This book is a graduate-level introduction to the tools and structures of modern 
differential geometry. Included are the topics usually found in a course on differ-
entiable manifolds, such as vector bundles, tensors, differential forms, de Rham 
cohomology, the Frobenius theorem and basic Lie group theory. The book also 
contains material on the general theory of connections on vector bundles and an 
in-depth chapter on semi-Riemannian geometry that covers basic material about 
Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is 
the inclusion of an early chapter on the differential geometry of hypersurfaces in 
Euclidean space. There is also a section that derives the exterior calculus version of 
Maxwell’s equations.

The first chapters of the book are suitable for a one-semester course on mani-
folds. There is more than enough material for a year-long course on manifolds and 
geometry.
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