Topics in Random Matrix Theory
Topics in Random Matrix Theory

Terence Tao

Graduate Studies in Mathematics
Volume 132
To Garth Gaudry, who set me on the road;
To my family, for their constant support;
And to the readers of my blog, for their feedback and contributions.
Contents

Preface ix

Acknowledgments x

Chapter 1. Preparatory material 1

§1.1. A review of probability theory 2

§1.2. Stirling’s formula 35

§1.3. Eigenvalues and sums of Hermitian matrices 39

Chapter 2. Random matrices 55

§2.1. Concentration of measure 56

§2.2. The central limit theorem 79

§2.3. The operator norm of random matrices 105

§2.4. The semicircular law 134

§2.5. Free probability 155

§2.6. Gaussian ensembles 182

§2.7. The least singular value 209

§2.8. The circular law 223

Chapter 3. Related articles 235

§3.1. Brownian motion and Dyson Brownian motion 236

§3.2. The Golden-Thompson inequality 252

§3.3. The Dyson and Airy kernels of GUE via semiclassical analysis 259

§3.4. The mesoscopic structure of GUE eigenvalues 265
Contents

Bibliography 273
Index 279
In the winter of 2010, I taught a topics graduate course on random matrix theory, the lecture notes of which then formed the basis for this text. This course was inspired by recent developments in the subject, particularly with regard to the rigorous demonstration of universal laws for eigenvalue spacing distributions of Wigner matrices (see the recent survey [Gu2009b]). This course does not directly discuss these laws, but instead focuses on more foundational topics in random matrix theory upon which the most recent work has been based. For instance, the first part of the course is devoted to basic probabilistic tools such as concentration of measure and the central limit theorem, which are then used to establish basic results in random matrix theory, such as the Wigner semicircle law on the bulk distribution of eigenvalues of a Wigner random matrix, or the circular law on the distribution of eigenvalues of an iid matrix. Other fundamental methods, such as free probability, the theory of determinantal processes, and the method of resolvents, are also covered in the course.

This text begins in Chapter 1 with a review of the aspects of probability theory and linear algebra needed for the topics of discussion, but assumes some existing familiarity with both topics, as well as a first-year graduate-level understanding of measure theory (as covered for instance in my books [Ta2011, Ta2010]). If this text is used to give a graduate course, then Chapter 1 can largely be assigned as reading material (or reviewed as necessary), with the lectures then beginning with Section 2.1.

The core of the book is Chapter 2. While the focus of this chapter is ostensibly on random matrices, the first two sections of this chapter focus more on random scalar variables, in particular, discussing extensively the concentration of measure phenomenon and the central limit theorem in this
setting. These facts will be used repeatedly when we then turn our attention to random matrices, and also many of the proof techniques used in the scalar setting (such as the moment method) can be adapted to the matrix context. Several of the key results in this chapter are developed through the exercises, and the book is designed for a student who is willing to work through these exercises as an integral part of understanding the topics covered here.

The material in Chapter 3 is related to the main topics of this text, but is optional reading (although the material on Dyson Brownian motion from Section 3.1 is referenced several times in the main text).

This text is not intended as a comprehensive introduction to random matrix theory, which is by now a vast subject. For instance, only a small amount of attention is given to the important topic of invariant matrix ensembles, and we do not discuss connections between random matrix theory and number theory, or to physics. For these topics we refer the reader to other texts such as [AnGuZi2010], [DeGi2007], [De1999], [Fo2010], [Me2004]. We hope, however, that this text can serve as a foundation for the reader to then tackle these more advanced texts.

Acknowledgments

I am greatly indebted to my students of the course on which this text was based, as well as many further commenters on my blog, including Ahmet Arivan, Joshua Batson, Florent Benaych-Georges, Sivaraman Balakrishnan, Alex Bloemendal, Kailhua Cai, Andres Caicedo, Emmanuel Candes, Jerome Chauvet, Brian Davies, Ben Golub, Stephen Heilman, John Jiang, Li Jing, Rowan Killip, Sungjin Kim, Allen Knutson, Greg Kuperberg, Choongbum Lee, George Lowther, Rafe Mazzeo, Mark Meckes, William Meyerson, Samuel Monnier, Andreas Naive, Srivatsan Narayanan, Giovanni Peccati, Leonid Petrov, Anand Rajagopalan, Brian Simanek, James Smith, Mads Sorensen, David Speyer, Ambuj Tewari, Luca Trevisan, Qiaochu Yuan, and several anonymous contributors, for comments and corrections. These comments, as well as the original lecture notes for this course, can be viewed online at:

terrytao.wordpress.com/category/teaching/254a-random-matrices

The author is supported by a grant from the MacArthur Foundation, by NSF grant DMS-0649473, and by the NSF Waterman award.

Last, but not least, I am indebted to my co-authors Emmanuel Candes and Van Vu, for introducing me to the fascinating world of random matrix theory, and to the anonymous referees of this text for valuable feedback and suggestions.
Bibliography

Index

*-algebra, 160
2-Schatten norm, 114
R-transform, 180
S-transform, 181
k-point correlation function, 196

absolutely continuous, 12
absolutely integrable, 13, 16
Airy function, 206, 260
Airy kernel, 206
almost sure convergence, 32, 135
almost surely, 6
amalgamated free product, 176
antichain, 215
approximation to the identity, 144
asymptotic free independence, 174
asymptotic notation, 5
asymptotically almost surely, 6
Atiyah convexity theorem, 44
augmented matrix, 133
Azuma’s inequality, 63

Bai-Yin theorem, 129, 131
Baker-Campbell-Hausdorff formula, 252
Bernoulli distribution, 11
Bernoulli ensemble, 105
Berry-Esséen theorem, 87, 95, 100, 101, 213
bijective proof, 122
Bochner’s theorem, 257
Borel-Cantelli lemma, 14, 34
Brown measure, 232, 233
Burgers’ equation, 153

Carleman continuity theorem, 90
Catalan number, 122
Cauchy transform, 142
Cauchy-Binet formula, 253
Cauchy-Schwarz inequality, 164
central limit theorem, 79, 86
classical probability theory, 160
Chebyshev’s inequality, 17
Chernoff bound, 79
Chernoff inequality, 61
Christoffel-Darboux formula, 197
circular law, 193, 209, 224
circular unitary ensemble, 268
classical probability measure, 160
compressible, 213, 215, 218
concentration of measure, 56
condition number, 209
conditional expectation, 27
conditional independence, 27
conditional probability, 24
conditioning, 24, 29
convergence in distribution, 32
convergence in expectation, 135
convergence in probability, 32, 135
convergence in the sense of *-moments, 172
convergence in the sense of moments, 172
correlation, 58
Courant-Fischer minimax theorem, 42
covariance matrix, 86
cumulant, 180
cumulative distribution function, 12
Index

determinantal integration formula, 195
Dirac distribution, 11
discrete uniform distribution, 11
disintegration, 28
distance between random vector and subspace, 78
dual basis, 219
Duhamel formula, 256
Dyck word, 122
Dyson operator, 248
empirical spectral distribution, 135, 162
entropy formula, 38
entropy function, 38
epsilon net argument, 110, 212
ESD, 135
Essén concentration inequality, 85
essential range, 29
event, 2
expectation, 13
expected empirical spectral distribution, 162
exponential moment, 15
exponential moment method, 62, 64, 71
extension (probability space), 3
faithfulness, 163
Fekete points, 266
first moment method, 14, 57
Fock space, 176
Fokker-Planck equation, 104
Fourier moment, 15
free central limit theorem, 182
free convolution, 178
free cumulant, 181
free independence, 157, 174
free probability, 157
free product, 176
Frobenius inner product, 254
Frobenius norm, 47, 114
Fubini-Tonelli theorem, 31
functional calculus, 168

Gamma function, 36
Gaudin-Mehta formula, 196, 259
Gaussian, 12
Gaussian concentration inequality, 71
Gaussian ensemble, 105
Gaussian Orthogonal Ensemble (GOE), 105
Gaussian symmetrisation inequality, 112
Gaussian Unitary Ensemble (GUE), 106, 259
Gelfand-Naimark theorem, 170
Gelfand-Tsetlin pattern, 50
generic chaining, 111
geometric distribution, 11
Ginibre formula, 183, 191, 251
GNS construction, 169
Golden-Thompson inequality, 253
Hölder inequality, 54
Hadamard product, 111
Hadamard variation formula, 49
harmonic oscillator, 200, 259
heat equation, 243
Herbst’s argument, 77
Herglotz function, 144
Herglotz representation theorem, 144
Hermite differential equation, 200
Hermite polynomial, 194, 259, 267
Hermite recurrence relation, 199
high probability, 6
Hilbert-Schmidt inner product, 254
Hilbert-Schmidt norm, 47, 114
hodograph transform, 154
Hoeffding’s inequality, 63
Hoeffding’s lemma, 61
Horn’s conjecture, 39

iid, 23
iid matrices, 105
incompressible, 213, 215
independence, 19
indicator function, 8
inner product, 163
inverse Littlewood-Offord problem, 216
inverse moment problem, 91
Ito calculus, 242
Ito’s formula, 242
Jensen’s inequality, 18
Johansson formula, 250
joint distribution, 19
joint independence, 19
Ky Fan inequality, 40
Lévy’s continuity theorem, 83, 84
Lagrange multiplier, 41
Laplace’s method, 38
large deviation inequality, 17, 56, 60
law, 10
law of large numbers (strong), 66
law of large numbers (weak), 66
least singular value, 209
Leibniz formula for determinants, 250
Lidskii inequality, 46
Lindeberg condition, 86
Lindeberg trick, 93
Lindskii inequality, 45
linearity of convergence, 80
linearity of expectation, 14
log-Sobolev inequality, 75
logarithmic potential, 228
logarithmic potential continuity theorem, 228
Markov inequality, 14
McDiarmid’s inequality, 69
mean field approximation, 192
measurable space, 7
median, 18
method of stationary phase, 38
method of steepest descent, 203
moment, 15
moment map, 44
moment method, 89, 115
negative moment, 15
negative second moment identity, 217
neighbourhood recurrence, 245
Neumann series, 164, 225
Newton potential, 193
Newtonian potential, 228
non-commutative Hölder inequality, 47, 255
non-commutative probability space, 161, 169
non-negativity, 163
normal distribution, 12
normal matrix, 52
nuclear norm, 47
operator norm, 106
Ornstein-Uhlenbeck equation, 245
Ornstein-Uhlenbeck operator, 103
Ornstein-Uhlenbeck process, 104, 244
orthogonal polynomials, 194
overwhelming probability, 6
pairwise independence, 19
Paley-Zygmund inequality, 18
partial flag, 44
partial trace, 43
permutahedron, 44
Poisson distribution, 11
Poisson kernel, 144
polynomial rate, 151
predecessor comparison, 145
principal minor, 50
probabilistic way of thinking, 4
probability density function, 12
probability distribution, 10
probability measure, 2
probability space, 2
Prokhorov’s theorem, 33
pseudospectrum, 225
pushforward, 10
random matrices, 10
random sign matrices, 105
random variable, 7
Rayleigh quotient, 43
recurrence, 245
regular conditional probability, 29
resolvent, 15, 143
Riemann-Lebesgue lemma, 82
sample space, 2
scalar random variable, 8
scale invariance, 80
Schatten norm, 46, 53, 254
Schubert variety, 44
Schur complement, 147
Schur-Horn inequality, 44
Schur-Horn theorem, 44
second moment method, 17, 58
self-consistent equation, 150
semi-classical analysis, 201
semicircular element, 173
singular value decomposition, 51
singular vector, 51
singularity probability, 214
spectral instability, 224
spectral measure, 167
spectral projection, 41, 48
spectral theorem, 39, 41, 167
spectral theory, 160
spectrum, 39
Sperner’s theorem, 215
Stein continuity theorem, 98
Stein transform, 99
Stieltjes continuity theorem, 144
Stieltjes transform, 143, 164, 178
Stirling’s formula, 35
stochastic calculus, 236, 244
stochastic process, 237
sub-exponential tail, 16
sub-Gaussian, 16
symmetric Bernoulli ensemble, 105
symmetric Wigner ensembles, 105
symmetrisation argument, 111
Talagrand concentration inequality, 73
tensor power trick, 254
tensorisation, 70
tight sequence of distributions, 32
trace axiom, 169
trace class, 47
Tracy-Widom law, 107, 134, 206
transience, 245
trapezoid rule, 35
tree, 121
tridiagonal matrix algorithm, 206
truncation argument, 81, 139
truncation method, 65
undoing a conditioning, 25
uniform distribution, 12
union bound, 5, 6, 15
Vandermonde determinant, 183, 194, 248
variance, 17
von Neumann algebra, 171
Weyl chamber, 246
Weyl group, 188
Weyl inequality, 40, 46
Wielandt minimax formula, 44
Wielandt-Hoffman inequality, 46
Wiener process, 236
Wigner ensemble, 106
Wigner semicircular law, 136
Wishart distribution, 221
zeroth moment, 15
zeroth moment method, 5, 57
Titles in This Series

132 Terence Tao, Topics in Random Matrix Theory, 2012
131 Ian M. Musson, Lie Superalgebras and Enveloping Algebras, 2012
130 Viviana Ene and Jürgen Herzog, Gröbner Bases in Commutative Algebra, 2011
127 Jeffrey Strom, Modern Classical Homotopy Theory, 2011
126 Terence Tao, An Introduction to Measure Theory, 2011
125 Dror Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, 2011
124 David A. Cox, John B. Little, and Henry K. Schenck, Toric Varieties, 2011
123 Gregory Eskin, Lectures on Linear Partial Differential Equations, 2011
122 Teresa Crespo and Zbigniew Hajto, Algebraic Groups and Differential Galois Theory, 2011
121 Tobias Holck Colding and William P. Minicozzi, II, A Course in Minimal Surfaces, 2011
120 Qing Han, A Basic Course in Partial Differential Equations, 2011
119 Alexander Korosteliev and Olga Korostelva, Mathematical Statistics, 2011
118 Hal L. Smith and Horst R. Thieme, Dynamical Systems and Population Persistence, 2011
117 Terence Tao, An Epsilon of Room, I: Real Analysis, 2010
116 Joan Cerdà, Linear Functional Analysis, 2010
114 Joseph J. Rotman, Advanced Modern Algebra, 2010
113 Thomas M. Liggett, Continuous Time Markov Processes, 2010
112 Fredi Tröltzsch, Optimal Control of Partial Differential Equations, 2010
111 Simon Brendle, Ricci Flow and the Sphere Theorem, 2010
110 Matthias Kreck, Differential Algebraic Topology, 2010
109 John C. Neu, Training Manual on Transport and Fluids, 2010
108 Enrique Outerelo and Jesús M. Ruiz, Mapping Degree Theory, 2009
107 Jeffrey M. Lee, Manifolds and Differential Geometry, 2009
106 Robert J. Daverman and Gerard A. Venema, Embeddings in Manifolds, 2009
105 Giovanni Leoni, A First Course in Sobolev Spaces, 2009
104 Paolo Aluffi, Algebra: Chapter 0, 2009
103 Branko Grünbaum, Configurations of Points and Lines, 2009
102 Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, 2002
101 Ward Cheney and Will Light, A Course in Approximation Theory, 2000
100 I. Martin Isaacs, Algebra, 1994
99 Gerald Teschl, Mathematical Methods in Quantum Mechanics, 2009
97 David C. Ullrich, Complex Made Simple, 2008
96 N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, 2008
95 Leon A. Takhtajan, Quantum Mechanics for Mathematicians, 2008
94 James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category Ø, 2008
93 Peter W. Michor and Peter W. Michor, Topics in Differential Geometry, 2008
92 I. Martin Isaacs, Finite Group Theory, 2008
91 Louis Halle Rowen, Graduate Algebra: Noncommutative View, 2008
90 Larry J. Gerstein, Basic Quadratic Forms, 2008
89 Anthony Bonato, A Course on the Web Graph, 2008
TITLES IN THIS SERIES

86 Yulij Ilyashenko, Yulij Ilyashenko, Yulij Ilyashenko, and Sergei Yakovenko, Lectures on Analytic Differential Equations, 2008
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and Duality, 2007
83 Wolfgang Ebeling, Functions of Several Complex Variables and Their Singularities, 2007
81 V. V. Prasolov, Elements of Homology Theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular Forms, a Computational Approach, 2007
78 Harry Dym, Linear Algebra in Action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci Flow, 2006
76 Michael E. Taylor, Measure Theory and Integration, 2006
75 Peter D. Miller, Applied Asymptotic Analysis, 2006
74 V. V. Prasolov, Elements of Combinatorial and Differential Topology, 2006
73 Louis Halle Rowen, Graduate Algebra: Commutative View, 2006
72 R. J. Williams, Introduction to the Mathematics of Finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, 2006
70 Seán Dineen, Probability Theory in Finance, 2005
69 Sebastian Montiel and Antonio Ros, Curves and Surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A Geometric Approach to Free Boundary Problems, 2005
67 T.Y. Lam, Introduction to Quadratic Forms over Fields, 2005
66 Yuli Ilyashenko, Vitali Milman, and Antonis Tsolomitis, Functional Analysis, 2004
65 S. Ramanan, Global Calculus, 2005
64 A. A. Kirillov, Lectures on the Orbit Method, 2004
63 Steven Dale Cutkosky, Resolution of Singularities, 2004
62 T. W. Körner, A Companion to Analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for Beginners, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation Theory of Finite Groups: Algebra and Arithmetic, 2003
58 Cédric Villani, Topics in Optimal Transportation, 2003
57 Robert Plato, Concise Numerical Mathematics, 2003
56 E. B. Vinberg, A Course in Algebra, 2003
55 C. Herbert Clemens, A Scrapbook of Complex Curve Theory, 2003
54 Alexander Barvinok, A Course in Convexity, 2002
53 Henryk Iwaniec, Spectral Methods of Automorphic Forms, 2002
52 Ilka Agricola and Thomas Friedrich, Global Analysis, 2002
51 Y. A. Abramovich and C. D. Aliprantis, Problems in Operator Theory, 2002
50 Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, 2002
48 Y. Eliashberg and N. Mishachev, Introduction to the h-Principle, 2002
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.