Ordinary Differential Equations
Qualitative Theory
Ordinary Differential Equations

Qualitative Theory

Luis Barreira
Claudia Valls

Translated by the authors

Graduate Studies in Mathematics
Volume 137
Contents

Preface ix

Part 1. Basic Concepts and Linear Equations

Chapter 1. Ordinary Differential Equations 3
 §1.1. Basic notions 3
 §1.2. Existence and uniqueness of solutions 9
 §1.3. Additional properties 21
 §1.4. Existence of solutions for continuous fields 32
 §1.5. Phase portraits 35
 §1.6. Equations on manifolds 48
 §1.7. Exercises 53

Chapter 2. Linear Equations and Conjugacies 57
 §2.1. Nonautonomous linear equations 57
 §2.2. Equations with constant coefficients 63
 §2.3. Variation of parameters formula 75
 §2.4. Equations with periodic coefficients 78
 §2.5. Conjugacies between linear equations 85
 §2.6. Exercises 97

Part 2. Stability and Hyperbolicity

Chapter 3. Stability and Lyapunov Functions 105
 §3.1. Notions of stability 105
§3.2. Stability of linear equations 108
§3.3. Stability under nonlinear perturbations 113
§3.4. Lyapunov functions 116
§3.5. Exercises 123

Chapter 4. Hyperbolicity and Topological Conjugacies 127
§4.1. Hyperbolic critical points 127
§4.2. The Grobman–Hartman theorem 129
§4.3. Hölder conjugacies 139
§4.4. Structural stability 141
§4.5. Exercises 143

Chapter 5. Existence of Invariant Manifolds 147
§5.1. Basic notions 147
§5.2. The Hadamard–Perron theorem 149
§5.3. Existence of Lipschitz invariant manifolds 150
§5.4. Regularity of the invariant manifolds 157
§5.5. Exercises 167

Part 3. Equations in the Plane

Chapter 6. Index Theory 171
§6.1. Index for vector fields in the plane 171
§6.2. Applications of the notion of index 176
§6.3. Index of an isolated critical point 179
§6.4. Exercises 181

Chapter 7. Poincaré–Bendixson Theory 185
§7.1. Limit sets 185
§7.2. The Poincaré–Bendixson theorem 190
§7.3. Exercises 196

Part 4. Further Topics

Chapter 8. Bifurcations and Center Manifolds 201
§8.1. Introduction to bifurcation theory 201
§8.2. Center manifolds and applications 206
§8.3. Theory of normal forms 215
§8.4. Exercises 222
<table>
<thead>
<tr>
<th>Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9. Hamiltonian Systems</td>
<td>225</td>
</tr>
<tr>
<td>§9.1. Basic notions</td>
<td>225</td>
</tr>
<tr>
<td>§9.2. Linear Hamiltonian systems</td>
<td>229</td>
</tr>
<tr>
<td>§9.3. Stability of equilibria</td>
<td>231</td>
</tr>
<tr>
<td>§9.4. Integrability and action-angle coordinates</td>
<td>235</td>
</tr>
<tr>
<td>§9.5. The KAM theorem</td>
<td>239</td>
</tr>
<tr>
<td>§9.6. Exercises</td>
<td>240</td>
</tr>
<tr>
<td>Bibliography</td>
<td>243</td>
</tr>
<tr>
<td>Index</td>
<td>245</td>
</tr>
</tbody>
</table>
Preface

The main objective of this book is to give a comprehensive introduction to the qualitative theory of ordinary differential equations. In particular, among other topics, we study the existence and uniqueness of solutions, phase portraits, linear equations and their perturbations, stability and Lyapunov functions, hyperbolicity, and equations in the plane.

The book is also intended to serve as a bridge to important topics that are often left out of a second course of ordinary differential equations. Examples include the smooth dependence of solutions on the initial conditions, the existence of topological and differentiable conjugacies between linear systems, and the Hölder continuity of the conjugacies in the Grobman–Hartman theorem. We also give a brief introduction to bifurcation theory, center manifolds, normal forms, and Hamiltonian systems.

We describe mainly notions, results and methods that allow one to discuss the qualitative properties of the solutions of an equation without solving it explicitly. This can be considered the main aim of the qualitative theory of ordinary differential equations.

The book can be used as a basis for a second course of ordinary differential equations. Nevertheless, it has more material than the standard courses, and so, in fact, it can be used in several different ways and at various levels. Among other possibilities, we suggest the following courses:

a) advanced undergraduate/beginning graduate second course: Chapters 1–5 and 7–8 (without Sections 1.4, 2.5 and 8.3, and without the proofs of the Grobman–Hartman and Hadamard–Perron theorems);

b) advanced undergraduate/beginning graduate course on equations in the plane: Chapters 1–3 and 6–7;
c) advanced graduate course on stability: Chapters 1–3 and 8–9;
d) advanced graduate course on hyperbolicity: Chapters 1–5.

Other selections are also possible, depending on the audience and on the time available for the course. In addition, some sections can be used for short expositions, such as Sections 1.3.2, 1.4, 2.5, 3.3, 6.2 and 8.3.

Other than some basic pre-requisites of linear algebra and differential and integral calculus, all concepts and results used in the book are recalled along the way. Moreover, (almost) everything is proven, with the exception of some results in Chapters 8 and 9 concerning more advanced topics of bifurcation theory, center manifolds, normal forms and Hamiltonian systems. Being self-contained, the book can also serve as a reference or for independent study.

Now we give a more detailed description of the contents of the book. Part 1 is dedicated to basic concepts and linear equations.

- In Chapter 1 we introduce the basic notions and results of the theory of ordinary differential equations, in particular, concerning the existence and uniqueness of solutions (Picard–Lindelöf theorem) and the dependence of solutions on the initial conditions. We also establish the existence of solutions of equations with a continuous vector field (Peano’s theorem). Finally, we give an introduction to the description of the qualitative behavior of the solutions in the phase space.

- In Chapter 2 we consider the particular case of (nonautonomous) linear equations and we study their fundamental solutions. It is often useful to see an equation as a perturbation of a linear equation, and to obtain the solutions (even if implicitly) using the variation of parameters formula. This point of view is often used in the book. We then consider the particular cases of equations with constant coefficients and equations with periodic coefficients. More advanced topics include the C^1 dependence of solutions on the initial conditions and the existence of topological conjugacies between linear equations with hyperbolic matrices of coefficients.

Part 2 is dedicated to the study of stability and hyperbolicity.

- In Chapter 3, after introducing the notions of stability and asymptotic stability, we consider the particular case of linear equations, for which it is possible to give a complete characterization of these notions in terms of fundamental solutions. We also consider the particular cases of equations with constant coefficients and equations with periodic coefficients. We then discuss the persistence of asymptotic stability under sufficiently small perturbations of an asymptotically
stable linear equation. We also give an introduction to the theory of Lyapunov functions, which sometimes yields the stability of a given solution in a more or less automatic manner.

- In Chapters 4–5 we introduce the notion of hyperbolicity and we study some of its consequences. Namely, we establish two key results on the behavior of the solutions in a neighborhood of a hyperbolic critical point: the Grobman–Hartman and Hadamard–Perron theorems. The first shows that the solutions of a sufficiently small perturbation of a linear equation with a hyperbolic critical point are topologically conjugate to the solutions of the linear equation. The second shows that there are invariant manifolds tangent to the stable and unstable spaces of a hyperbolic critical point. As a more advanced topic, we show that all conjugacies in the Grobman–Hartman theorem are Hölder continuous. We note that Chapter 5 is more technical: the exposition is dedicated almost entirely to the proof of the Hadamard–Perron theorem. In contrast to what happens in other texts, our proof does not require a discretization of the problem or additional techniques that would only be used here. We note that the material in Sections 5.3 and 5.4 is used nowhere else in the book.

In Part 3 we describe results and methods that are particularly useful in the study of equations in the plane.

- In Chapter 6 we give an introduction to index theory and its applications to differential equations in the plane. In particular, we describe how the index of a closed path with respect to a vector field varies with the path and with the vector field. We then present several applications, including a proof of the existence of a critical point inside any periodic orbit, in the sense of Jordan’s curve theorem.

- In Chapter 7 we give an introduction to the Poincaré–Bendixson theory. After introducing the notions of α-limit and ω-limit sets, we show that bounded semi-orbits have nonempty, compact and connected α-limit and ω-limit sets. Then we establish one of the important results of the qualitative theory of ordinary differential equations in the plane, the Poincaré–Bendixson theorem. In particular, it yields a criterion for the existence of periodic orbits.

Part 4 is of a somewhat different nature and it is only here that not everything is proved. Our main aim is to make the bridge to important topics that are often left out of a second course of ordinary differential equations.

- In Chapter 8 we give an introduction to bifurcation theory, with emphasis on examples. We then give an introduction to the theory of center manifolds, which often allows us to reduce the order of an
equation in the study of stability or the existence of bifurcations. We also give an introduction to the theory of normal forms that aims to eliminate through a change of variables all possible terms in the original equation.

- Finally, in Chapter 9 we give an introduction to the theory of Hamiltonian systems. After introducing some basic notions, we describe several results concerning the stability of linear and nonlinear Hamiltonian systems. We also consider the notion of integrability and the Liouville–Arnold theorem on the structure of the level sets of independent integrals in involution. In addition, we describe the basic ideas of the KAM theory.

The book also includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter.

Luis Barreira and Claudia Valls
Lisbon, February 2012
Bibliography

Index

α-limit set, 186
ω-limit set, 186

action-angle coordinates, 235
almost-integrable Hamiltonian, 239
Arzelà-Ascoli theorem, 32
asymptotic stability, 107
asymptotically stable
equation, 110
solution, 107
attracting point, 17
autonomous equation, 8

ball
closed –, 13
open –, 13
bifurcation, 203
Hopf –, 206
pitchfork –, 205
saddle-node –, 204
three-dimensional –, 201
transcritical –, 204

Brouwer’s fixed point theorem, 178

canonical
matrix, 229
transformation, 227
Cauchy sequence, 14
center, 74
manifold, 201, 206, 208
manifold theorem, 208
space, 207
characteristic
exponent, 80, 232

multiplier, 80
chart, 48
closed
ball, 13
path, 171
compact set, 10
complete metric space, 14
completely integrable Hamiltonian, 236
conjugacy
differentiable –, 87
linear –, 87, 88
topological –, 87, 90, 127
connected
component, 176
set, 176
conservative equation, 42
contraction, 12, 16
fiber –, 18
convergent sequence, 14
coordinate system, 48
critical point, 35
hyperbolic –, 127, 136
isolated –, 179
critical value, 50
curve, 50, 171
degree of freedom, 225
differentiable
conjugacy, 87
map, 50
structure, 48

differential equation, 3
on manifold, 48
disconnected set, 176
distance, 12

equation
 asymptotically stable –, 110
 autonomous –, 8
 conservative –, 42
 homogeneous –, 76
 homological –, 217
 linear –, 57
 linear variational –, 60
 nonautonomous –, 57
 nonhomogeneous –, 76
 stable –, 110
 unstable –, 110

equilibrium, 231
 nondegenerate –, 231
existence of solutions, 9, 33
exponential, 63

fiber, 18
 contraction, 18
 contraction theorem, 18
first integral, 42
fixed point, 16
Floquet’s theorem, 79
flow, 8
 box theorem, 36
focus
 stable –, 74
 unstable –, 74
formula
 Liouville’s –, 62
 variation of parameters –, 75, 76
frequency vector, 239
function
 Lipschitz –, 15
 locally Lipschitz –, 10, 116
 Lyapunov –, 105, 116, 117
 periodic –, 78
 strict Lyapunov –, 117
functions
 in involution, 236
 independent –, 236
fundamental
 solution, 59
 theorem of algebra, 179
global solution, 37
Grobman–Hartman theorem, 129, 136
Gronwall’s lemma, 21
Hadamard–Perron theorem, 149
Hamiltonian, 225
 almost-integrable –, 239
 completely integrable –, 236
 matrix, 229
 system, 225
heteroclinic orbit, 37
homoclinic orbit, 37
homogeneous equation, 76
homological equation, 217
homotopic paths, 174
homotopy, 174
Hopf bifurcation, 206
hyperbolic
 critical point, 127, 136
 matrix, 90
hyperbolicity, 127

independent functions, 236
index, 171, 172, 180
 theory, 171
initial
 condition, 6
 value problem, 3, 6
instability criterion, 121
integrability, 235
integral, 42
invariance of domain theorem, 136
invariant
 manifold, 147, 150
 set, 185
isolated critical point, 179

Jordan canonical form, 64
Jordan’s curve theorem, 176
KAM theorem, 239, 240
lemma
 Gronwall’s –, 21
 Morse’s –, 231
line integral, 172
linear
 conjugacy, 87, 88
 equation, 57
 Hamiltonian system, 229
 variational equation, 60
Liouville’s formula, 62
Liouville–Arnold theorem, 237
Lipschitz function, 15
locally Lipschitz function, 10, 116
Lyapunov function, 105, 116, 117

manifold, 48
center –, 208
invariant –, 147, 150
stable –, 150, 208
unstable –, 150, 208
matrix
canonical –, 229
Hamiltonian –, 229
hyperbolic –, 90
monodromy –, 80
maximal interval, 29, 30
metric space, 12
monodromy matrix, 80
Morse's lemma, 231

negative semiorbit, 186
node
stable –, 68, 69, 71
unstable –, 68, 71
nonautonomous equation, 57
nondegenerate equilibrium, 231
nonhomogeneous equation, 76
nonresonant vector, 239
norm, 13
normal form, 215

open ball, 13
orbit, 35, 186
heteroclinic –, 37
homoclinic –, 37
periodic –, 36

path
closed –, 171
regular –, 171
Peano’s theorem, 33
periodic
function, 78
orbit, 36
phase
portrait, 35, 38, 67
space, 35
Picard–Lindelöf theorem, 10
pitchfork bifurcation, 205
Poincaré–Bendixson
theorem, 190, 192
theory, 185
point
attracting –, 17
critical –, 35
fixed –, 16
Poisson bracket, 229
positive semiorbit, 186
quasi-periodic trajectory, 239
regular path, 171
resonant vector, 219

saddle point, 68
saddle-node bifurcation, 204
semiorbit
negative –, 186
positive –, 186
sequence
Cauchy –, 14
convergent –, 14

set
α-limit –, 186
ω-limit –, 186
compact –, 10
connected –, 176
disconnected –, 176
invariant –, 185

solution, 3, 4, 51
asymptotically stable –, 107
fundamental –, 59
global –, 37
stable –, 106
unstable –, 106

solutions
differentially conjugate –, 87
linearly conjugate –, 87
topologically conjugate –, 87

space
center –, 207
complete metric –, 14
metric –, 12
of solutions, 57
stable –, 128, 207
unstable –, 128, 207
stability, 105, 113
asymptotic –, 107
criterion, 117
theory, 105

stable
equation, 110
focus, 74
manifold, 150, 208
node, 68, 69, 71
solution, 106
space, 128, 207

strict Lyapunov function, 117
tangent
bundle, 50
space, 50
vector, 50

theorem
 Arzelà–Ascoli –, 32
 Brouwer's fixed point –, 178
 center manifold –, 208
 fiber contraction –, 18
 Floquet’s –, 79
 flow box –, 36
 Grobman–Hartman –, 129, 136
 Hadamard–Perron –, 149
 invariance of domain –, 136
 Jordan's curve –, 176
 KAM –, 239, 240
 Liouville–Arnold –, 237
 Peano's –, 33
 Picard–Lindelöf –, 10
 Poincaré–Bendixson –, 190, 192

theory
 of normal forms, 215
 Poincaré–Bendixson –, 185

topological conjugacy, 87, 90, 127
transcritical bifurcation, 204
transversal, 191

uniqueness of solutions, 9

unstable
 equation, 110
 focus, 74
 manifold, 150, 208
 node, 68, 71
 solution, 106
 space, 128, 207

variation of parameters formula, 75, 76

vector
 field, 51
 frequency –, 239
 nonresonant –, 239
 resonant –, 219
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Differential Equations</td>
<td>Luis Barreira and Claudia Valls</td>
<td>2012</td>
</tr>
<tr>
<td>Regularity of Free Boundaries in Obstacle-Type Problems</td>
<td>Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva</td>
<td>2012</td>
</tr>
<tr>
<td>Linear and Quasi-linear Evolution Equations in Hilbert Spaces</td>
<td>Pascal Cherrier and Albert Milani</td>
<td>2012</td>
</tr>
<tr>
<td>Analytic Number Theory</td>
<td>Jean-Marie De Koninck and Florian Luca</td>
<td>2012</td>
</tr>
<tr>
<td>Hyperbolic Partial Differential Equations and Geometric Optics</td>
<td>Jeffrey Rauch</td>
<td>2012</td>
</tr>
<tr>
<td>Topics in Random Matrix Theory</td>
<td>Terence Tao</td>
<td>2012</td>
</tr>
<tr>
<td>Lie Superalgebras and Enveloping Algebras</td>
<td>Ian M. Musson</td>
<td>2012</td>
</tr>
<tr>
<td>Gröbner Bases in Commutative Algebra</td>
<td>Viviana Ene and Jürgen Herzog</td>
<td>2011</td>
</tr>
<tr>
<td>Classical Methods in Ordinary Differential Equations</td>
<td>Stuart P. Hastings and J. Bryce McLeod</td>
<td>2012</td>
</tr>
<tr>
<td>Tensors: Geometry and Applications</td>
<td>J. M. Landsberg</td>
<td>2012</td>
</tr>
<tr>
<td>Modern Classical Homotopy Theory</td>
<td>Jeffrey Strom</td>
<td>2011</td>
</tr>
<tr>
<td>An Introduction to Measure Theory</td>
<td>Terence Tao</td>
<td>2011</td>
</tr>
<tr>
<td>Riemann Surfaces by Way of Complex Analytic Geometry</td>
<td>Dror Varolin</td>
<td>2011</td>
</tr>
<tr>
<td>Toric Varieties</td>
<td>David A. Cox, John B. Little, and Henry K. Schenck</td>
<td>2011</td>
</tr>
<tr>
<td>Lectures on Linear Partial Differential Equations</td>
<td>Gregory Eskin</td>
<td>2011</td>
</tr>
<tr>
<td>Algebraic Groups and Differential Galois Theory</td>
<td>Teresa Crespo and Zbigniew Hajto</td>
<td>2011</td>
</tr>
<tr>
<td>A Course in Minimal Surfaces</td>
<td>Tobias Holck Colding and William P. Minicozzi, II</td>
<td>2011</td>
</tr>
<tr>
<td>A Basic Course in Partial Differential Equations</td>
<td>Qing Han</td>
<td>2011</td>
</tr>
<tr>
<td>Mathematical Statistics</td>
<td>Alexander Korostelev and Olga Korosteleva</td>
<td>2011</td>
</tr>
<tr>
<td>Dynamical Systems and Population Persistence</td>
<td>Hal L. Smith and Horst R. Thieme</td>
<td>2011</td>
</tr>
<tr>
<td>An Epsilon of Room, I: Real Analysis</td>
<td>Terence Tao</td>
<td>2010</td>
</tr>
<tr>
<td>Linear Functional Analysis</td>
<td>Joan Cerdà</td>
<td>2010</td>
</tr>
<tr>
<td>An Introductory Course on Mathematical Game Theory</td>
<td>Julio González-Díaz, Ignacio García-Jurado, and M. Gloria Fiestras-Janeiro</td>
<td>2010</td>
</tr>
<tr>
<td>Advanced Modern Algebra</td>
<td>Joseph J. Rotman</td>
<td>2010</td>
</tr>
<tr>
<td>Continuous Time Markov Processes</td>
<td>Thomas M. Liggett</td>
<td>2010</td>
</tr>
<tr>
<td>Optimal Control of Partial Differential Equations</td>
<td>Fredi Tröltzsch</td>
<td>2010</td>
</tr>
<tr>
<td>Ricci Flow and the Sphere Theorem</td>
<td>Simon Brendle</td>
<td>2010</td>
</tr>
<tr>
<td>Differential Algebra Topology</td>
<td>Matthias Kreck</td>
<td>2010</td>
</tr>
<tr>
<td>Training Manual on Transport and Fluids</td>
<td>John C. Neu</td>
<td>2010</td>
</tr>
<tr>
<td>Mapping Degree Theory</td>
<td>Enrique Outerelo and Jesús M. Ruiz</td>
<td>2009</td>
</tr>
<tr>
<td>Manifolds and Differential Geometry</td>
<td>Jeffrey M. Lee</td>
<td>2009</td>
</tr>
<tr>
<td>Embeddings in Manifolds</td>
<td>Robert J. Daverman and Gerard A. Venema</td>
<td>2009</td>
</tr>
<tr>
<td>A First Course in Sobolev Spaces</td>
<td>Giovanni Leoni</td>
<td>2009</td>
</tr>
<tr>
<td>Algebra: Chapter 0</td>
<td>Paolo Aluffi</td>
<td>2009</td>
</tr>
<tr>
<td>Configurations of Points and Lines</td>
<td>Branko Grünbaum</td>
<td>2009</td>
</tr>
<tr>
<td>Introduction to Fourier Analysis and Wavelets</td>
<td>Mark A. Pinsky</td>
<td>2002</td>
</tr>
<tr>
<td>A Course in Approximation Theory</td>
<td>Ward Cheney and Will Light</td>
<td>2000</td>
</tr>
<tr>
<td>Algebra</td>
<td>I. Martin Isaacs</td>
<td>1994</td>
</tr>
<tr>
<td>Mathematical Methods in Quantum Mechanics</td>
<td>Gerald Teschl</td>
<td>2009</td>
</tr>
<tr>
<td>Discrete Differential Geometry</td>
<td>Alexander I. Bobenko and Yuri B. Suris</td>
<td>2008</td>
</tr>
<tr>
<td>Complex Made Simple</td>
<td>David C. Ullrich</td>
<td>2008</td>
</tr>
<tr>
<td>Lectures on Elliptic and Parabolic Equations in Sobolev Spaces</td>
<td>N. V. Krylov</td>
<td>2008</td>
</tr>
<tr>
<td>Quantum Mechanics for Mathematicians</td>
<td>Leon A. Takhtajan</td>
<td>2008</td>
</tr>
</tbody>
</table>
SELECTED TITLES IN THIS SERIES

94 James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, 2008
93 Peter W. Michor, Topics in Differential Geometry, 2008
92 I. Martin Isaacs, Finite Group Theory, 2008
91 Louis Halle Rowen, Graduate Algebra: Noncommutative View, 2008
90 Larry J. Gerstein, Basic Quadratic Forms, 2008
89 Anthony Bonato, A Course on the Web Graph, 2008
86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on Analytic Differential Equations, 2008
84 Charalambos D. Aliprantis and Rabee Tourky, Cones and Duality, 2007
83 Wolfgang Ebeling, Functions of Several Complex Variables and Their Singularities, 2007
81 V. V. Prasolov, Elements of Homology Theory, 2007
80 Davar Khoshnevisan, Probability, 2007
79 William Stein, Modular Forms, a Computational Approach, 2007
78 Harry Dym, Linear Algebra in Action, 2007
77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci Flow, 2006
76 Michael E. Taylor, Measure Theory and Integration, 2006
75 Peter D. Miller, Applied Asymptotic Analysis, 2006
74 V. V. Prasolov, Elements of Combinatorial and Differential Topology, 2006
73 Louis Halle Rowen, Graduate Algebra: Commutative View, 2006
72 R. J. Williams, Introduction to the Mathematics of Finance, 2006
71 S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, 2006
70 Sean Dineen, Probability Theory in Finance, 2005
69 Sebastián Montiel and Antonio Ros, Curves and Surfaces, 2005
68 Luis Caffarelli and Sandro Salsa, A Geometric Approach to Free Boundary Problems, 2005
67 T.Y. Lam, Introduction to Quadratic Forms over Fields, 2005
66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional Analysis, 2004
65 S. Ramanan, Global Calculus, 2005
64 A. A. Kirillov, Lectures on the Orbit Method, 2004
63 Steven Dale Cutkosky, Resolution of Singularities, 2004
62 T. W. Körner, A Companion to Analysis, 2004
61 Thomas A. Ivey and J. M. Landsberg, Cartan for Beginners, 2003
60 Alberto Candel and Lawrence Conlon, Foliations II, 2003
59 Steven H. Weintraub, Representation Theory of Finite Groups: Algebra and Arithmetic, 2003
58 Cédric Villani, Topics in Optimal Transportation, 2003
57 Robert Plato, Concise Numerical Mathematics, 2003

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.