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Preface

The systematic study of matrices began late in the history of mathematics,
but matrix theory is an active area of research now and it has applications in
numerical analysis, control and systems theory, optimization, combinatorics,
mathematical physics, differential equations, probability and statistics, eco-
nomics, information theory, and engineering.

One attractive feature of matrix theory is that many matrix problems
can be solved naturally by using tools or ideas from other branches of math-
ematics such as analysis, algebra, graph theory, geometry and topology. The
reverse situation also occurs, as shown in the last chapter.

This book is intended for use as a text for graduate or advanced under-
graduate level courses, or as a reference for research workers. It is based on
lecture notes for graduate courses I have taught five times at East China
Normal University and once at Peking University. My aim is to provide
a concise treatment of matrix theory. I hope the book contains the basic
knowledge and conveys the flavor of the subject.

When I chose material for this book, I had the following criteria in
mind: 1) important; 2) elegant; 3) ingenious; 4) interesting. Of course, a
very small percentage of mathematics meets all of these criteria, but I hope
the results and proofs here meet at least one of them. As a reader I feel
that for clarity, the logical steps of a mathematical proof cannot be omitted,
though routine calculations may be or should be. Whenever possible, I try
to have a conceptual understanding of a result. I always emphasize methods
and ideas.

ix



x Preface

Most of the exercises are taken from research papers, and they have
some depth. Thus if the reader has difficulty in solving the problems in
these exercises, she or he should not feel frustrated.

Parts of this book appeared in a book in Chinese with the same title
published by the Higher Education Press in 2008.

Thanks go to Professors Pei Yuan Wu and Wei Wu for discussions on the
topic of numerical range and to Dr. Zejun Huang for discussions on Theorem
1.2 and Lemma 9.13. I am grateful to Professors Tsuyoshi Ando, Rajendra
Bhatia, Richard Brualdi, Roger Horn, Erxiong Jiang, Chi-Kwong Li, Zhi-
Guo Liu, Jianyu Pan, Jia-Yu Shao, Sheng-Li Tan, and Guang Yuan Zhang
for their encouragement, friendship and help over the years. I wish to express
my gratitude to my family for their kindness. This work was supported by
the National Science Foundation of China under grant 10971070.

Shanghai, December 2012 Xingzhi Zhan
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Notation

C the field of complex numbers

R the field of real numbers

Ωn the set of n-tuples with components from Ω

Mn the set of n× n complex matrices

Mm,n the set of m× n complex matrices

Mn(Ω) the set of n× n matrices with entries from Ω

A(i, j) entry of the matrix A in the i-th row and j-th column

A[α|β] submatrix of A that lies in the rows indexed by α and columns
indexed by β.

A(α|β) submatrix of A obtained by deleting the rows indexed by α and
columns indexed by β.

AT transpose of the matrix A

A∗ conjugate transpose of the complex matrix A

diag(d1, . . . , dn) the diagonal matrix with diagonal entries d1, . . . , dn

A1 ⊕A2 ⊕ · · · ⊕Ak the block diagonal matrix diag(A1, A2, . . . , Ak)

I the identity matrix whose order is clear from the context

In the identity matrix of order n

� by definition equal to

∀ for all

σ(A) spectrum of the matrix A

ρ(A) spectral radius of A

〈·, ·〉 the standard Euclidean inner product

249



250 Notation

‖ · ‖ norm on a vector space

‖A‖∞ spectral norm of A

‖A‖F Frobenius norm of A

‖A‖p Schatten p-norm of A

‖A‖(k) Fan k-norm of A

‖ · ‖D dual norm of ‖ · ‖
W (A) numerical range of A

w(A) numerical radius of A

〈f1, . . . , fk〉 the ideal generated by f1, . . . , fk

ranA range of A

kerA kernel of A

A⊗B tensor product of A and B

A ◦B Hadamard product of A and B

sv(A) the set of the singular values of A

detA determinant of A

perA permanent of A

trA trace of A(
n
k

)
binomial coefficient, n!/[k!(n− k)!]

Ck(A) k-th compound matrix of A

Sn the set of permutations of 1, 2, . . . , n

x ≺ y x is majorized by y

x ≺w y x is weakly majorized by y

x ≺log y x is log-majorized by y

x ≺wlog y x is weakly log-majorized by y

diag(x) diagonal matrix whose diagonal entries are the components of x

A ≤ B, B ≥ A B −A is positive semidefinite or entry-wise nonnegative,
depending on context

si(A) the i-th largest singular value of A

s(A) the vector of the singular values of A

|A| (A∗A)1/2 or (|aij |) if A = (aij), depending on context

D(A) digraph of the matrix A

F [x1, . . . , xk] the ring of polynomials in the indeterminates x1, . . . , xk over
the field F
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0-1 matrix, 4

absolute norm, 88
absolute value of a matrix, 77
adjacency matrix, 133
algebraic integer, 217
algebraic multiplicity of an eigenvalue,

123
algebraic number, 216
algebraically closed field, 150
Ando’s matrix Young inequality, 100
assignment problem, 213

band matrix, 4
bipartite digraph, 167
Birkhoff’s theorem, 58

Carathéodory’s theorem, conic version,
28

Cartesian decomposition, 97
Cauchy’s interlacing theorem, 52
Cauchy’s theorem on polynomials, 224
Cayley transformation, 75
Cayley-Menger determinant, 221
circulant matrix, 5
column sum norm, 10
commutator, 184
companion matrix, 21
completely monotonic function, 146
compound matrix, 47
conditionally negative semidefinite

matrix, 145
conditionally positive semidefinite

matrix, 145

contraction, 68
copositive matrix, 76
corner of a convex set, 194
correlation matrix, 62
covering of a matrix, 45

density matrix, 186
determinantal divisor, 199
diagonal dominance theorem, 188
diagonalizable matrix, 3
diagonally dominant matrix, 188
digraph, 132
digraph of a matrix, 133
doubly stochastic map, 61
doubly stochastic matrix, 49
doubly substochastic matrix, 64
dual norm, 12, 92

elementary divisors, 203
Eneström-Kakeya theorem, 225
equivalent matrices, 198
essentially Hermitian matrix, 193
exponent of a primitive matrix, 135
extreme point, 58

Fan k-norm, 92
Fan dominance principle, 92
Fan’s inequalities, 56
Farkas’s theorem, 27
friendship theorem, 214
Frobenius canonical form, 138
Frobenius inequality, 32
Frobenius norm, 10
fully indecomposable matrix, 174
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functional calculus, 68

Gelfand’s spectral radius formula, 84
generalized inverse, 23
geometric multiplicity of an eigenvalue,

123
Gergorin disc theorem, 189
Gröbner basis, 26
graph, 133
Green matrix, 183

Hadamard inequality, 67, 75
Hadamard power of a matrix, 145
Hadamard product, 38
Hankel matrix, 4
Hardy-Littlewood-Pólya theorem, 57
Hermitian matrix, 2
Hessenberg matrix, 4
Hilbert’s Nullstellensatz, 218
Hopf’s eigenvalue bound, 143
Householder transformation, 17

ideal, 217
idempotent, 118
imprimitive matrix, 129
incidence matrix, 215
index of imprimitivity, 129
induced operator norm, 10
infinitely divisible matrix, 145
invariant factor, 199
irreducible matrix, 120

Jordan canonical form, 206
Jordan decomposition, 54

Kronecker product, 35

Löwner partial order, 54
Lieb-Thirring inequality, 70
line rank, 45
log-majorization, 67
lower triangular matrix, 3
Lyapunov equation, 44

M-matrix, 139
majorization, 56
Min-Max expression, 51
Minkowski inequality, 74
monomial matrix, 209
monotone norm, 88
Moore-Penrose inverse, 23

Newton’s identities, 7
nonnegative matrix, 46

norm, 10
normal matrix, 2
numerical radius, 21
numerical range, 18

operator monotone function, 69
optimal matching distance, 104
orthogonal projection, 29
oscillatory matrix, 138

partial isometry, 100
partly decomposable matrix, 174
permanent, 46
permutation matrix, 4
Perron root, 126
Perron vector, 126
Perron-Frobenius theorem, 123
polarization identity, 3
positive definite matrix, 3
positive matrix, 119
positive semidefinite matrix, 3
positively stable matrix, 43
primitive matrix, 129

rational canonical form, 205
reducible matrix, 120
reducing eigenvalue, 195
reducing subspace, 30
regular matrix set, 190
resultant, 218
row sum norm, 10

Schatten p-norm, 91
Schur complement, 23
Schur’s theorem, 38, 62
Schur’s unitary triangularization

theorem, 14
Sherman-Morrison-Woodbury formula,

32
sign pattern, 165
sign pattern class, 166
sign stable (sign semi-stable) pattern,

173
sign-nonsingular pattern, 168
simple eigenvalue, 123
singular value, 15, 77
singular value decomposition, 15
skew-Hermitian matrix, 2
Smith canonical form, 201
sparse matrix, 4
spectral norm, 11
spectral radius, 2
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spectrally arbitrary sign pattern, 179,
232

spectrum, 2
stable (semi-stable) matrix, 173
strictly lower triangular matrix, 3
strictly upper triangular matrix, 3
strongly connected digraph, 133
submultiplicative norm, 11
Sylvester equation, 40
Sylvester inequality, 32
Sylvester matrix, 218
symmetric gauge function, 89
symmetric norm, 101

tensor product, 35
term rank, 44
Toeplitz matrix, 4
Toeplitz-Hausdorff Theorem, 19
totally nonnegative matrix, 138
totally positive, 138
trace norm, 92
transversal, 45
tree, 170
tree sign pattern, 170
tropical determinant, 213

unimodular matrix, 198
unit vector, 15
unitarily invariant norm, 43, 90
unitary matrix, 2
upper triangular matrix, 3

Vandermonde matrix, 5

walk, 132
weak log-majorization, 67
weakly unitarily invariant norm, 114
Weyl’s inequalities, 53
Weyl’s monotonicity principle, 54

Z-matrix, 139
zero pattern, 179
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Matrix theory is a classical topic of algebra that had originated, in its current form, 
in the middle of the 19th century. It is remarkable that for more than 150 years it 
continues to be an active area of research full of new discoveries and new applications.

This book presents modern perspectives of matrix theory at the level accessible to 
graduate students. It differs from other books on the subject in several aspects. First, 
the book treats certain topics that are not found in the standard textbooks, such as 
completion of partial matrices, sign patterns, applications of matrices in combinatorics, 
number theory, algebra, geometry, and polynomials. There is an appendix of unsolved 
problems with their history and current state. Second, there is some new material 
within traditional topics such as Hopf’s eigenvalue bound for positive matrices with 
a proof, a proof of Horn’s theorem on the converse of Weyl’s theorem, a proof of 
Camion-Hoffman’s theorem on the converse of the diagonal dominance theorem, 
and Audenaert’s elegant proof of a norm inequality for commutators. Third, by using 
powerful tools such as the compound matrix and Gröbner bases of an ideal, much 
more concise and illuminating proofs are given for some previously known results. This 
makes it easier for the reader to gain basic knowledge in matrix theory and to learn 
about recent developments.


