Random Operators
Disorder Effects
on Quantum Spectra
and Dynamics
Random Operators
Disorder Effects on Quantum Spectra and Dynamics

Michael Aizenman
Simone Warzel

Graduate Studies in Mathematics
Volume 168

American Mathematical Society
Providence, Rhode Island
Dedicated to Marta by Michael

and to Erna and Horst by Simone
Contents

Preface xiii

Chapter 1. Introduction 1

§1.1. The random Schrödinger operator 2

§1.2. The Anderson localization-delocalization transition 3

§1.3. Interference, path expansions, and the Green function 6

§1.4. Eigenfunction correlator and fractional moment bounds 8

§1.5. Persistence of extended states versus resonant delocalization 9

§1.6. The book’s organization and topics not covered 10

Chapter 2. General Relations Between Spectra and Dynamics 11

§2.1. Infinite systems and their spectral decomposition 12

§2.2. Characterization of spectra through recurrence rates 15

§2.3. Recurrence probabilities and the resolvent 18

§2.4. The RAGE theorem 19

§2.5. A scattering perspective on the ac spectrum 21

Notes 23

Exercises 24

Chapter 3. Ergodic Operators and Their Self-Averaging Properties 27

§3.1. Terminology and basic examples 28

§3.2. Deterministic spectra 34

§3.3. Self-averaging of the empirical density of states 37
§3.4. The limiting density of states for sequences of operators 38
§3.5.* Statistic mechanical significance of the DOS 41
Notes 41
Exercises 42

Chapter 4. Density of States Bounds: Wegner Estimate and Lifshitz Tails 45
§4.1. The Wegner estimate 46
§4.2.* DOS bounds for potentials of singular distributions 48
§4.3. Dirichlet-Neumann bracketing 51
§4.4. Lifshitz tails for random operators 56
§4.5. Large deviation estimate 62
§4.6.* DOS bounds which imply localization 63
Notes 66
Exercises 67

Chapter 5. The Relation of Green Functions to Eigenfunctions 69
§5.1. The spectral flow under rank-one perturbations 70
§5.2. The general spectral averaging principle 74
§5.3. The Simon-Wolff criterion 76
§5.4. Simplicity of the pure-point spectrum 79
§5.5. Finite-rank perturbation theory 80
§5.6.* A zero-one boost for the Simon-Wolff criterion 84
Notes 87
Exercises 88

Chapter 6. Anderson Localization Through Path Expansions 91
§6.1. A random walk expansion 91
§6.2. Feenberg’s loop-erased expansion 93
§6.3. A high-disorder localization bound 94
§6.4. Factorization of Green functions 96
Notes 98
Exercises 99

Chapter 7. Dynamical Localization and Fractional Moment Criteria 101
§7.1. Criteria for dynamical and spectral localization 102
§7.2. Finite-volume approximations 105
§7.3. The relation to the Green function 107
Chapter 12. Complete Localization in One Dimension

§12.1. Weyl functions and recursion relations
§12.2. Lyapunov exponent and Thouless relation
§12.3. The Lyapunov exponent criterion for ac spectrum
§12.4. Kotani theory
§12.5.* Implications for quantum wires
§12.6. A moment-generating function
§12.7. Complete dynamical localization

Notes
Exercises

Chapter 13. Diffusion Hypothesis and the Green-Kubo-Streda Formula

§13.1. The diffusion hypothesis
§13.2. Heuristic linear response theory
§13.3. The Green-Kubo-Streda formulas
§13.4. Localization and decay of the two-point function

Notes
Exercises

Chapter 14. Integer Quantum Hall Effect

§14.1. Laughlin’s charge pump
§14.2. Charge transport as an index
§14.3. A calculable expression for the index
§14.4. Evaluating the charge transport index in a mobility gap
§14.5. Quantization of the Kubo-Streda-Hall conductance
§14.6. The Connes area formula

Notes
Exercises

Chapter 15. Resonant Delocalization

§15.1. Quasi-modes and pairwise tunneling amplitude
§15.2. Delocalization through resonant tunneling
§15.3.* Exploring the argument’s limits

Notes
Exercises
Contents

Chapter 16. Phase Diagrams for Regular Tree Graphs

§16.1. Summary of the main results	250
§16.2. Recursion and factorization of the Green function	253
§16.3. Spectrum and DOS of the adjacency operator	255
§16.4. Decay of the Green function	257
§16.5. Resonant delocalization and localization	260

Notes | 265 |
Exercises | 267 |

Chapter 17. The Eigenvalue Point Process and a Conjectured Dichotomy

§17.1. Poisson statistics versus level repulsion	269
§17.2. Essential characteristics of the Poisson point processes	272
§17.3. Poisson statistics in finite dimensions in the localization regime	275
§17.4. The Minami bound and its CGK generalization	282
§17.5. Level statistics on finite tree graphs	283
§17.6. Regular trees as the large N limit of d-regular graphs	285

Notes | 286 |
Exercises | 287 |

Appendix A. Elements of Spectral Theory

§A.1. Hilbert spaces, self-adjoint linear operators, and their resolvents	289
§A.2. Spectral calculus and spectral types	293
§A.3. Relevant notions of convergence	296

Notes | 298 |

Appendix B. Herglotz-Pick Functions and Their Spectra

§B.1. Herglotz representation theorems	299
§B.2. Boundary function and its relation to the spectral measure	300
§B.3. Fractional moments of HP functions	301
§B.4. Relation to operator monotonicity	302
§B.5. Universality in the distribution of the values of random HP functions	302

Bibliography | 303 |
Index | 323 |
Disorder effects on quantum spectra and dynamics have drawn the attention of both physicists and mathematicians. In this introduction to the subject we aim to present some of the relevant mathematics, paying heed also to the physics perspective.

The techniques presented here combine elements of analysis and probability, and the mathematical discussion is accompanied by comments with a relevant physics perspective. The seeds of the subject were initially planted by theoretical and experimental physicists. The mathematical analysis was, however, enabled not by filling the gaps in the theoretical physics arguments, but through paths which proceed on different tracks. As in other areas of mathematical physics, a mathematical formulation of the theory is expected both to be of intrinsic interest and to potentially also facilitate further propagation of insights which originated in physics.

The text is based on notes from courses that were presented at our respective institutions and attended by graduate students and postdoctoral researchers. Some of the lectures were delivered by course participants, and for that purpose we found the availability of organized material to be of great value.

The chapters in the book were originally intended to provide reading material for, roughly, a week each; but it is clear that for such a pace omissions should be made and some of the material left for discretionary reading. The book starts with some of the core topics of random operator theory, which are also covered in other texts (e.g., [105, 82, 324, 228, 230, 367]). From Chapter 5 on, the discussion also includes material which has so far been presented in research papers and not so much in monographs on the subject. The mark * next to a section number indicates material which the reader is
advised to skip at first reading but which may later be found useful. The selection presented in the book is not exhaustive, and for some topics and methods the reader is referred to other resources.

During the work on this book we have been encouraged by family and many colleagues. In particular we wish to thank Yosi Avron, Marek Biskup, Joseph Imry, Vojkan Jaksic, Werner Kirsch, Hajo Leschke, Elliott Lieb, Peter Müller, Barry Simon, Uzy Smilansky, Sasha Sodin, and Philippe Sosoe for constructive suggestions. Above all Michael would like to thank his wife, Marta, for her support, patience, and wise advice.

The editorial and production team at AMS and in particular Ina Mette and Arlene O’Sean are thanked for their support, patience, and thoroughness. We also would like to acknowledge the valuable support which this project received through NSF research grants, a Sloan Fellowship (to Simone), and a Simons Fellowship (to Michael). Our collaboration was facilitated through Michael’s invitation as J. von Neumann Visiting Professor at TU München and Simone’s invitation as Visiting Research Collaborator at Princeton University. Some of the writing was carried out during visits to CIRM (Luminy) and to the Weizmann Institute of Science (Rehovot). We are grateful to all who enabled this project and helped to make it enjoyable.

Michael Aizenman, Princeton and Rehovot
Simone Warzel, Munich
2015

Bibliography

Bibliography

Index

σ-moment regular
 definition, 125
 uniformly, 155
K-property, 84

Abelian average, 18
Abelian-Tauberian theorem, 18
adjacency operator, 96, 254
almost-Mathieu operator, 32
André-Aubrey duality, 43, 111
anomalous transport, 212

ballistic transport, 4, 24, 200, 266
Bernoulli potentials, 115
Berry-Tabor conjecture, 271
Bethe lattice, 250
Birkhoff theorem, 30
Bohigas-Giannoni-Schmit conjecture, 271
Boole’s equality, 119, 131
Borel-Stieltjes transformation
 spectral representation, 300
 weak L^1-estimate, 119
 boundary condition, 40
 box Λ_L, 30

canopy graph, 283
Cantor spectrum, 33
Cesàro average, 16
Combes-Germinet-Klein estimate, 282
Combes-Thomas estimate, 159
concentration function, 48
conditional probability distribution, 46
conductivity tensor, 203

Connes area formula, 228
contraction bound, 140
Cramér’s theorem, 62
critical exponent, 145
current
 density, 202
 functional, 186
cyclic subspace $\mathcal{H}_{\mathcal{H},\phi}$, 70, 294
cyclic vector, 294
de la Vallée-Poussin theorem, 300
decoupling inequality, 125, 126, 131, 133
degree
 graph, 52
 operator, 53
delocalization criterion, 240
density of states (DOS)
 finite-volume measure, 39
 function, 46
 measure, 48
deterministic potential, 183
diffusive transport, 5, 99, 200, 266
Dirichlet-Neumann bracketing, 53
distance $\text{dist}_\Lambda(x,y)$, 146
distributional convergence
 point processes, 273
eigenfunction correlator
 $Q(x,y;I)$, 101
 bound, 107, 112
 interpolated, 111
 lower semicontinuity, 106
relation to Green function, 107, 110
eigenfunction localization, 104
eigenvalue counting measure, 270
ergodic operator, 29
standard, 29
ergodicity, 28
exponential dynamical localization
definition, 103
strong, 103
Feenberg expansion, 93
Fekete lemma, 188
ferromagnetic Ising spins, 137
Fourier transformation on \mathbb{Z}^d, 292
fractional moments (FM)
finiteness, 119, 122
gauge transformation, 43
gauge transformation U_a, 219
Gaussian random matrix ensembles
(GOE, GUE, GSE), 271, 286
Gibb’s measure, 137
Green function, 72
$G(x, y; z)$, 78
factorization, 92, 98, 177, 255
Guarneri bound, 25
Hall conductance, 206, 215, 218
plateaux, 221, 222
quantization, 221, 222
Hammersley stratagem, 145
Harper Hamiltonian, 136, 138
Herglotz representation theorem, 299
Herglotz-Pick function, 299
Hilbert space, 289
$\ell^2(G)$, 12, 289
Hofstadter butterfly, 33
independent bond percolation, 136
independent, identically distributed
(id), 33
index
charge transport, 224, 226
Fredholm-Noether, 230, 231
pair of orthogonal projections, 220
integrated density of states
$n(E)$, 40
continuity, 44
finite-volume, 40
intensity measure, 272
Ishii-Pastur theorem, 181
Kesten-McKay law, 256
Kotani-Simon theorem, 182, 183
Krein-Feshbach-Schur formula, 81
Kubo-Greenwood formula, 201, 208, 208
positive temperatures, 208
Streda version, 205
Kunz-Souillard theorem, 36
Landauer-Büttiker formalism, 21
Laplacian
Dirichlet, 52
graph, 92, 290
lattice, 30, 292
magnetic, 31, 290
Neumann, 52
periodic, 67
large deviation estimate, 62, 246
lattice shifts, 30
$(S_x)_{x \in \mathbb{Z}^d}$, 24
Laughlin’s charge pump, 218
layer-cake representation, 118, 122
Lebesgue point, 270
level repulsion, 270
Lieb-Robinson bound, 24
localization via, 173
Lifshitz tails, 56, 57
Lyapunov exponent
one dimension, 179
tree graph, 257
via finite-volume criteria, 166, 168
via Lifshitz tails, 173
Lyapunov exponent, 94
 Löwner theorem, 302
Lyapunov exponent
magnetic translations, 32, 225
marginally-ℓ^1-criterion, 113
measurable covariant operator, 203
min-max principle, 54
Minami estimate, 252
mixing, 42
transfer matrix, 194
transmission probability, 23

tree graph
 canopy, 283
 regular, 250
 regular rooted, 250

tunneling amplitude, 234, 235

two-point function
 non-interacting fermions, 210
 percolation, 136
 spin models, 136

uniformly τ-Hölder continuous ($U\tau H$), 16
 locally, 125
 multivariate case, 49

vague convergence, 297
van Hove asymptotics, 54, 68
vector potential, 31
velocity correlation measure, 207
velocity operator, 202
von Neumann-Wigner non-crossing rule, 87

weak convergence, 297
Wegner estimate, 46, 51, 76
weight function, 104
Weyl criterion, 35
Weyl function, 177
Weyl sequence, 35
whispering gallery modes (WGM), 138

Wiener theorem, 16
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Series</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Operators</td>
<td>Michael Aizenman and Simone Warzel</td>
<td>168</td>
<td>2015</td>
</tr>
<tr>
<td>Expansion in Finite Simple Groups of Lie Type</td>
<td>Terence Tao</td>
<td>164</td>
<td>2015</td>
</tr>
<tr>
<td>A Course on Large Deviations with an Introduction to Gibbs Measures</td>
<td>Firas Rassoul-Agha and Timo Seppäläinen</td>
<td>162</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Tropical Geometry</td>
<td>Diane Maclagan and Bernd Sturmfels</td>
<td>161</td>
<td>2015</td>
</tr>
<tr>
<td>Introduction to Analytic Number Theory</td>
<td>Marius Overholt</td>
<td>160</td>
<td>2014</td>
</tr>
<tr>
<td>The Role of Nonassociative Algebra in Projective Geometry</td>
<td>John R. Faulkner</td>
<td>159</td>
<td>2014</td>
</tr>
<tr>
<td>Dynamical Systems and Linear Algebra</td>
<td>Fritz Colonius and Wolfgang Kliemann</td>
<td>158</td>
<td>2014</td>
</tr>
<tr>
<td>Introduction to Tropical Geometry</td>
<td>Diane Maclagan and Bernd Sturmfels</td>
<td>157</td>
<td>2014</td>
</tr>
<tr>
<td>A Course in Analytic Number Theory</td>
<td>Marius Overholt</td>
<td>156</td>
<td>2014</td>
</tr>
<tr>
<td>The Joys of Haar Measure</td>
<td>Joe Diestel and Angela Spalsbury</td>
<td>155</td>
<td>2013</td>
</tr>
<tr>
<td>Mathematics of Probability</td>
<td>Daniel W. Stroock</td>
<td>154</td>
<td>2013</td>
</tr>
<tr>
<td>Introduction to Smooth Ergodic Theory</td>
<td>Luis Barreira and Yakov Pesin</td>
<td>153</td>
<td>2013</td>
</tr>
<tr>
<td>Matrix Theory</td>
<td>Xingzhi Zhan</td>
<td>152</td>
<td>2013</td>
</tr>
<tr>
<td>Combinatorial Game Theory</td>
<td>Aaron N. Siegel</td>
<td>151</td>
<td>2013</td>
</tr>
<tr>
<td>The K-book</td>
<td>Charles A. Weibel</td>
<td>150</td>
<td>2013</td>
</tr>
<tr>
<td>Lecture Notes on Functional Analysis</td>
<td>Alberto Bressan</td>
<td>148</td>
<td>2012</td>
</tr>
<tr>
<td>Higher Order Fourier Analysis</td>
<td>Terence Tao</td>
<td>147</td>
<td>2012</td>
</tr>
<tr>
<td>A Course in Abstract Analysis</td>
<td>John B. Conway</td>
<td>146</td>
<td>2012</td>
</tr>
<tr>
<td>Ordinary Differential Equations and Dynamical Systems</td>
<td>Gerald Teschl</td>
<td>145</td>
<td>2012</td>
</tr>
<tr>
<td>Knowing the Odds</td>
<td>John B. Walsh</td>
<td>144</td>
<td>2012</td>
</tr>
<tr>
<td>Semiclassical Analysis</td>
<td>Maciej Zworski</td>
<td>143</td>
<td>2012</td>
</tr>
<tr>
<td>Ordinary Differential Equations</td>
<td>Luis Barreira and Claudia Valls</td>
<td>142</td>
<td>2012</td>
</tr>
<tr>
<td>Regularity of Free Boundaries in Obstacle-Type Problems</td>
<td>Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva</td>
<td>141</td>
<td>2012</td>
</tr>
<tr>
<td>Linear and Quasi-linear Evolution Equations in Hilbert Spaces</td>
<td>Pascal Cherrier and Albert Milani</td>
<td>140</td>
<td>2012</td>
</tr>
<tr>
<td>Analytic Number Theory</td>
<td>Jean-Marie De Koninck and Florian Luca</td>
<td>139</td>
<td>2012</td>
</tr>
<tr>
<td>Hyperbolic Partial Differential Equations and Geometric Optics</td>
<td>Jeffrey Rauch</td>
<td>138</td>
<td>2012</td>
</tr>
<tr>
<td>Topics in Random Matrix Theory</td>
<td>Terence Tao</td>
<td>137</td>
<td>2012</td>
</tr>
<tr>
<td>Lie Superalgebras and Enveloping Algebras</td>
<td>Ian M. Musson</td>
<td>136</td>
<td>2012</td>
</tr>
<tr>
<td>Gröbner Bases in Commutative Algebra</td>
<td>Viviana Ene and Jürgen Herzog</td>
<td>135</td>
<td>2011</td>
</tr>
<tr>
<td>Classical Methods in Ordinary Differential Equations</td>
<td>Stuart P. Hastings and J. Bryce McLeod</td>
<td>134</td>
<td>2012</td>
</tr>
<tr>
<td>Tensors: Geometry and Applications</td>
<td>J. M. Landsberg</td>
<td>133</td>
<td>2012</td>
</tr>
</tbody>
</table>
This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization—presented here via the fractional moment method, up to recent results on resonant delocalization.

The subject’s multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory’s relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and related results.

The text incorporates notes from courses that were presented at the authors’ respective institutions and attended by graduate students and postdoctoral researchers.

It has been almost 25 years since the last major book on this subject. The authors masterfully update the subject but more importantly present their own probabilistic insights in clear fashion. This wonderful book is ideal for both researchers and advanced students.

—Barry Simon, California Institute of Technology