Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Nonlinear PDEs: A Dynamical Systems Approach

About this Title

Guido Schneider, Universität Stuttgart, Stuttgart, Germany and Hannes Uecker, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

Publication: Graduate Studies in Mathematics
Publication Year: 2017; Volume 182
ISBNs: 978-1-4704-3613-1 (print); 978-1-4704-4228-6 (online)
DOI: https://doi.org/10.1090/gsm/182
MathSciNet review: MR3702025
MSC: Primary 35-01; Secondary 37Kxx, 37Lxx

PDF View full volume as PDF

Read more about this volume

View other years and volumes:

Table of Contents

PDF Download chapters as PDF

Front/Back Matter

Chapters

References [Enhancements On Off] (What's this?)

References
  • Hélène Added and Stéphane Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal. 79 (1988), no. 1, 183–210. MR 950090, DOI 10.1016/0022-1236(88)90036-5
  • A. Ambrosetti and D. Arcoya, An introduction to nonlinear functional analysis and elliptic problems, Progress in Nonlinear Differential Equations and their Applications, 82, Birkhäuser Boston Inc., Boston, MA, 2011.
  • T. Alazard, N. Burq, and C. Zuily, On the Cauchy problem for gravity water waves, Invent. Math. 198 (2014), no. 1, 71–163.
  • A. B. Aceves, Optical gap solitons: Past, present, and future; theory and experiments, Chaos 10 (2000), no. 3, 584–589.
  • M. S. Alber, R. Camassa, Y. N. Fedorov, D. D. Holm, and J. E. Marsden, On billiard solutions of nonlinear PDEs, Phys. Lett. A 264 (1999), no. 2-3, 171–178.
  • —, The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type, Comm. Math. Phys. 221 (2001), no. 1, 197–227.
  • M. S. Alber, R. Camassa, D. D. Holm, and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys. 32 (1994), no. 2, 137–151.
  • T. Alazard and J.-M. Delort, Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 5, 1149–1238.
  • S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727.
  • —, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92.
  • V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, and V. V. Pukhnachev, Mathematical models of convection, De Gruyter Studies in Mathematical Physics, vol. 5, De Gruyter, Berlin, 2012.
  • G. P. Agrawal, Solitons and nonlinear wave equations, Academic Press, 2001.
  • G. B. Airy, Tides and waves, Enzyclopedia Metropolitana 5 (1845), 241–396.
  • L. Arnold, C. Jones, K. Mischaikow, and G. Raugel, Dynamical systems, Lecture Notes in Mathematics, vol. 1609, Springer-Verlag, Berlin, 1995, Lectures given at the Second C.I.M.E. Session held in Montecatini Terme, June 13-22, 1994, Edited by R. Johnson.
  • I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys. 74 (2002), no. 1, 99–143.
  • V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, third ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 2006, [Dynamical systems. III], Translated from the Russian original by E. Khukhro.
  • B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water waves and asymptotics, Invent. Math. 171 (2008), no. 3, 485–541.
  • D. Avitabile, D. J. B. Lloyd, J. Burke, E. Knobloch, and B. Sandstede, To snake or not to snake in the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 9 (2010), no. 3, 704–733.
  • H. W. Alt, Linear functional analysis. An application-oriented introduction, Springer, 2016.
  • D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math. 58 (2005), no. 10, 1287–1315.
  • H. Amann, Linear and quasilinear parabolic problems. Vol. I. abstract linear theory, Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.
  • V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics. 60. Springer-Verlag, 1978.
  • V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988, Translated from the Russian by Joseph Szücs.
  • M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM, Philadelphia, Pa., 1981.
  • A. Avila, Dynamics of renormalization operators, Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. I: Plenary lectures and ceremonies, Hackensack, NJ: World Scientific; New Delhi: Hindustan Book Agency, 2011, pp. 154–175.
  • G. I. Barenblatt, Scaling, self-similarity, and intermediate asymptotics, Cambridge: Cambridge University Press, 1996.
  • H. Brezis and F. Browder, Partial differential equations in the 20th century, Advances in Mathematics 135 (1998), 76–144.
  • F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston Inc., Boston, MA, 1994.
  • N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci. 25 (2015), no. 9, 1663–1763.
  • C. Blank, M. Chirilus-Bruckner, V. Lescarret, and G. Schneider, Breather solutions in periodic media, Comm. Math. Phys. 302 (2011), no. 3, 815–841.
  • M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon, and Magnus Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg- Landau equation, Physica D 44 (1990), no. 3, 421–444.
  • R. Bauer, W.-P. Düll, and G. Schneider, The KdV, Burgers, and Whitham limit for a spatially periodic Boussinesq model, arXiv:1608.05632 (2016).
  • T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A 328 (1972), 153–183.
  • W. A. Brock, G. Engström, and A. Xepapadeas, Spatial climate-economic models in the design of optimal climate policies across locations, European Economic Review 69 (2014), 78–103.
  • A. Babin and A. Figotin, Linear superposition in nonlinear wave dynamics, Rev. Math. Phys. 18 (2006), no. 9, 971–1053.
  • K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Periodic nanostructures for photonics, Physics reports 444 (2007), no. 3, 101–202.
  • B. Buffoni, M. D. Groves, and J. F. Toland, A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers, Philos. Trans. R. Soc. Lond., Ser. A 354 (1996), no. 1707, 575–607.
  • D. Blömker, M. Hairer, and G. A. Pavliotis, Modulation equations: Stochastic bifurcation in large domains, Commun. Math. Phys. 258 (2005), no. 2, 479–512.
  • J. Bricmont and A. Kupiainen, Renormalization group and the Ginzburg-Landau equation, Comm. Math. Phys. 150 (1992), 193–208.
  • —, Renormalizing partial differential equations, Constructive physics. Results in field theory, statistical mechanics and condensed matter physics. Proceedings of the conference, held at Ecole Polytechnique, Palaiseau, France, 25-27 July, 1994, Berlin: Springer-Verlag, 1995, pp. 83–115.
  • J. Billingham and A. C. King, Wave motion, Cambridge University Press, Cambridge, 2000.
  • J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 6 (1994), 893–922.
  • M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede, and T. Wagenknecht, Snakes, ladders, and isolas of localized patterns., SIAM J. Math. Anal. 41 (2009), no. 3, 936–972.
  • D. Blömker and W. W. Mohammed, Amplitude equations for SPDEs with cubic nonlinearities, Stochastics 85 (2013), no. 2, 181–215.
  • D. Blömker, S. Maier-Paape, and G. Schneider, The stochastic Landau equation as an amplitude equation, Discrete Contin. Dyn. Syst., Ser. B 1 (2001), no. 4, 527–541.
  • B. Birnir, H. P. McKean, and A. Weinstein, The rigidity of sine-Gordon breathers, Commun. Pure Appl. Math. 47 (1994), no. 8, 1043–1051.
  • N. Bekki and K. Nozaki, Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation, Physics Letters A 110 (1985), no. 3, 133–135.
  • M. Beck, T. T. Nguyen, B. Sandstede, and K. Zumbrun, Nonlinear stability of source defects in the complex Ginzburg-Landau equation, Nonlinearity 27 (2014), no. 4, 739–786.
  • M. B. Boussinesq, Essai sur la théorie des eaux courantes, Inst. France (séries 2) 23 (1877), 1–680.
  • J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society, Providence, RI, 1999.
  • D. Blömker and M. Romito, Local existence and uniqueness for a two-dimensional surface growth equation with space-time white noise, Stochastic Anal. Appl. 31 (2013), no. 6, 1049–1076.
  • M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc. 44 (1983), no. 285.
  • Th. J. Bridges, A universal form for the emergence of the Korteweg-de Vries equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2153, 20120707, 15.
  • J. Bitzer and G. Schneider, Approximation and attractivity properties of the degenerated Ginzburg-Landau equation, J. Math. Anal. Appl. 331 (2007), no. 2, 743–778.
  • K. Busch, G. Schneider, L. Tkeshelashvili, and H. Uecker, Justification of the Nonlinear Schrödinger equation in spatially periodic media, ZAMP 57 (2006), 1–35.
  • A. V. Babin and M. I. Vishik, Attractors of partial differential equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh 116A (1990), 221–243.
  • —, Attractors of evolution equations, North Holland, 1992.
  • W. Brock and A. Xepapadeas, Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control, Journal of Economic Dynamics and Control 32 (2008), no. 9, 2745–2787.
  • —, Pattern formation, spatial externalities and regulation in coupled economic–ecological systems, Journal of Environmental Economics and Management 59 (2010), no. 2, 149–164.
  • L. Carleson, On convergence and growth of partial sumas of Fourier series, Acta Math. 116 (1966), 135–157.
  • J. Carr, Applications of centre manifold theory, Applied Mathematical Sciences, Vol. 35. New York Heidelberg Berlin: Springer Verlag. XII. 142 p. DM 32.00; $ 14.60 (1981)., 1981.
  • M. Chirilus-Bruckner, C. Chong, G. Schneider, and H. Uecker, Separation of internal and interaction dynamics for NLS-described wave packets with different carrier waves, J. Math. Anal. Appl. 347 (2008), no. 1, 304–314.
  • M. Chirilus-Bruckner and G. Schneider, Detection of standing pulses in periodic media by pulse interaction, J. Differential Equations 253 (2012), no. 7, 2161–2190.
  • M. Chirilus-Bruckner, G. Schneider, and H. Uecker, On the interaction of NLS-described modulating pulses with different carrier waves, Math. Methods Appl. Sci. 30 (2007), no. 15, 1965–1978.
  • M. Chirilus-Bruckner, C. Chong, O. Prill, and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst., Ser. S 5 (2012), no. 5, 879–901.
  • G. M. Coclite and L. di Ruvo, Well-posedness results for the short pulse equation, Z. Angew. Math. Phys. 66 (2015), no. 4, 1529–1557.
  • M. Chirilus-Bruckner, W.-P. Düll, and G. Schneider, NLS approximation of time oscillatory long waves for equations with quasilinear quadratic terms, Math. Nachr. 288 (2015), no. 2-3, 158–166.
  • P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, Birkhaeuser, 1980.
  • P. Collet and J.-P Eckmann, The existence of dendritic fronts, Commun. Math. Phys. 107 (1986), no. 1, 39–92.
  • P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-Hohenberg problem, Comm. Math. Phys. 132 (1990), 139–152.
  • P. Collet, J.-P. Eckmann, and H. Epstein, Diffusive repair for the Ginzburg-Landau equation, Helv Phys Acta 65 (1992), 56–92.
  • M. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, 2009.
  • S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1982.
  • R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1989.
  • R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), no. 11, 1661.
  • M. C. Cross and P. C. Hohenberg, Pattern formation outside equilibrium, Rev. Mod. Phys. 65 (1993), 854–1190.
  • C. Chicone, Ordinary differential equations with applications, second ed., Texts in Applied Mathematics, vol. 34, Springer, New York, 2006.
  • P. Chossat and G. Iooss, The Couette-Taylor problem, New York: Springer-Verlag, 1994.
  • N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37.
  • D. Christodoulou and S. Klainerman, Asymptotic properties of linear field equations in Minkowski space, Commun. Pure Appl. Math. 43 (1990), no. 2, 137–199.
  • J. D. Crawford and E. Knobloch, Symmetry and symmetry-breaking bifurcations in fluid dynamics, Annual review of fluid mechanics, Vol. 23, Annual Reviews, Palo Alto, CA, 1991, pp. 341–387.
  • T. K. Callahan and E. Knobloch, Pattern formation in three-dimensional reaction-diffusion systems, Physica D 132 (1999), 339–362.
  • —, Long wavelength instabilities of three-dimensional patterns, Phys. Rev. E 64 (2001), 036214.
  • S. J. Chapman and G. Kozyreff, Exponential asymptotics of localised patterns and snaking bifurcation diagrams, Physica D 238 (2009), no. 3, 319–354.
  • P. Chossat and R. Lauterbach, Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics, vol. 15, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
  • A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), no. 1, 165–186.
  • E. A. Coddington, An introduction to ordinary differential equations, Prentice-Hall Mathematics Series, Prentice-Hall Inc., Englewood Cliffs, N.J., 1961.
  • P. Constantin, Some open problems and research directions in the mathematical study of fluid dynamics, Mathematics unlimited-2001 and beyond (Engquist et al., ed.), Springer, 2001, pp. 353–360.
  • A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis., Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2011.
  • J. Carr and R. Pego, Metastable patterns in solutions of $u_ t=\epsilon ^ 2u_ {xx}-f(u)$, Commun. Pure Appl. Math. 42 (1989), no. 5, 523–576.
  • —, Invariant manifolds for metastable patterns in $u_ t = \varepsilon {}^ 2 u_ {xx} - f(u)$, Proc. R. Soc. Edinb., Sect. A 116 (1990), no. 1-2, 133–160.
  • W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787–1003.
  • D. G. Crighton, Applications of KdV, Acta Appl. Math. 39 (1995), no. 1-3, 39–67.
  • C. Cercignani and D. H. Sattinger, Scaling limits and models in physical processes, DMV Seminar, vol. 28, Birkhäuser Verlag, Basel, 1998.
  • C. Chong and G. Schneider, Numerical evidence for the validity of the NLS approximation in systems with a quasilinear quadratic nonlinearity, ZAMM Z. Angew. Math. Mech. 93 (2013), no. 9, 688–696.
  • W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497–522.
  • P. Cummings and C. E. Wayne, Modified energy functionals and the nls approximation, arXiv:1606.00028v1, 2016.
  • V. Chepyzhov and S. Zelik, Infinite energy solutions for dissipative Euler equations in $\mathbb {R}^2$, J. Math. Fluid Mech. 17 (2015), no. 3, 513–532.
  • T. Dohnal and W. Dörfler, Coupled mode equation modeling for out-of-plane gap solitons in 2D photonic crystals, Multiscale Model. Simul. 11 (2013), no. 1, 162–191.
  • E. J. Doedel et al, AUTO: Continuation and bifurcation software for ordinary differential equations, cmvl.cs.concordia.ca/auto/, 2016.
  • L. Debnath, Nonlinear partial differential equations for scientists and engineers, second ed., Birkhäuser Boston Inc., Boston, MA, 2005.
  • J. Denzler, Nonpersistence of breather families for the perturbed sine Gordon equation, Commun. Math. Phys. 158 (1993), no. 2, 397–430.
  • R. C. diPrima, W. Eckhaus, and L. A. Segel, Non-linear wave-number interaction in near-critical two-dimensional flows, Journal of Fluid Mechanics 49 (1971), 705–744.
  • R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Publishing Company, 1989.
  • G. Dangelmayr, B. Fiedler, K. Kirchgässner, and A. Mielke, Dynamics of nonlinear waves in dissipative systems: reduction, bifurcation and stability, Pitman Research Notes in Mathematics Series, vol. 352, Longman, Harlow, 1996, With a contribution by G. Raugel.
  • Ch. R. Doering and J. D. Gibbon, Applied analysis of the Navier-Stokes equations, Cambridge Univ. Press, 1995.
  • H. R. Dullin, G. A. Gottwald, and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res. 33 (2003), no. 1-2, 73–95.
  • W.-P. Düll and M. Heß, Existence of long time solutions and validity of the Nonlinear Schrödinger approximation for a quasilinear dispersive equation, arXiv:1605.08704, 2016.
  • W.-P. Düll, A. Hermann, G. Schneider, and D. Zimmermann, Justification of the 2D NLS equation for a fourth order nonlinear wave equation - quadratic resonances do not matter much in case of analytic initial conditions, J. Math. Anal. Appl. 436 (2016), no. 2, 847–867.
  • A. Doelman, G. Hek, and N. Valkhoff, Stabilization by slow diffusion in a real Ginzburg-Landau system, J. Nonlinear Sci. 14 (2004), no. 3, 237–278.
  • Y. Demay, G. Iooss, and A. Mielke, Theory of steady Ginzburg-Landau equation in hydrodynamic stability problems, Eur. J. Mech. B 8 (1989), no. 3, 229–268.
  • P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge University Press, 1989.
  • G. Dangelmayr and L. Kramer, Mathematical tools for pattern formation, Evolution of spontaneous structures in dissipative continuous systems, Lecture Notes in Phys. New Ser. m Monogr., vol. 55, Springer, Berlin, 1998, pp. 1–85.
  • W.-P. Düll, Kourosh Sanei Kashani, G. Schneider, and D. Zimmermann, Attractivity of the Ginzburg-Landau mode distribution for a pattern forming system with marginally stable long modes, J. Differ. Equations 261 (2016), no. 1, 319–339.
  • A. D. Dean, P. C. Matthews, S. M. Cox, and J. R. King, Exponential asymptotics of homoclinic snaking., Nonlinearity 24 (2011), no. 12, 3323–3351.
  • E. J. Doedel, Lecture notes on numerical analysis of nonlinear equations, Numerical continuation methods for dynamical systems, Springer, Dordrecht, 2007, pp. 1–49.
  • T. Dohnal, D. Pelinovsky, and G. Schneider, Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential, J. Nonlinear Sci. 19 (2009), no. 2, 95–131.
  • T. Dohnal, J. Rademacher, H. Uecker, and D. Wetzel, pde2path 2.0, in ENOC 14, 2014.
  • W.-P. Düll and G. Schneider, Justification of the nonlinear Schrödinger equation for a resonant Boussinesq model, Indiana Univ. Math. J. 55 (2006), no. 6, 1813–1834.
  • —, Validity of Whitham’s equations for the modulation of periodic traveling waves in the NLS equation, J. Nonlinear Sci. 19 (2009), no. 5, 453–466.
  • A. Doelman, B. Sandstede, A. Scheel, and G. Schneider, The dynamics of modulated wave trains, Mem. Amer. Math. Soc. 199 (2009), no. 934.
  • W.-P. Düll, G. Schneider, and C. E. Wayne, Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth, Arch. Ration. Mech. Anal. 220 (2016), no. 2, 543–602.
  • T. Dohnal and H. Uecker, Coupled mode equations and gap solitons for the 2D Gross–Pitaevsky equation with a non-separable periodic potential, Phys.D 238 (2009), 860–879.
  • —, Bifurcation of Nonlinear Bloch waves from the spectrum in the nonlinear Gross-Pitaevskii equation, JNS, to appear, 2016.
  • W.-P. Düll, Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation, Commun. Pure Appl. Math. 65 (2012), no. 3, 381–429.
  • —, Justification of the Nonlinear Schrödinger approximation for a quasilinear wave equation, arXiv:1602.08016, 2016.
  • J. Duoandikoetxea, Fourier analysis., Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001.
  • A. Doelman and F. Veerman, An explicit theory for pulses in two component, singularly perturbed, reaction-diffusion equations, J. Dynam. Differential Equations 27 (2015), no. 3-4, 555–595.
  • A. Doelman, P. van Heijster, and F. Xie, A geometric approach to stationary defect solutions in one space dimension, SIAM J. Appl. Dyn. Syst. 15 (2016), no. 2, 655–712.
  • M. S. P. Eastham, The spectral theory of periodic differential equations, Texts in Mathematics (Edinburgh), Scottish Academic Press, Edinburgh; Hafner Press, New York, 1973.
  • W. Eckhaus, Studies in non-linear stability theory, Springer Tracts in Nat. Phil. Vol.6, 1965.
  • —, The Ginzburg-Landau equation is an attractor, J. Nonlinear Science 3 (1993), 329–348.
  • A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322 (1905), 549–560.
  • N. Ercolani, R. Indik, A. C. Newell, and T. Passot, Global description of patterns far from onset: a case study, Nonlinear dynamics. From lasers to butterflies. Selected lectures from the 15th Canberra international physics summer school, Canberra, Australia, 21 January – February 1, 2002, River Edge, NJ: World Scientific, 2003, pp. 411–435.
  • J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics, Comm. Math. Phys. 199 (1999), 441–470.
  • B. Ermentrout, Simulating, analyzing, and animating dynamical systems. a guide to xppaut for researchers and students, Software, Environments, and Tools, vol. 14, SIAM, Philadelphia, PA, 2002.
  • J. Escher and B. Scarpellini, On the asymptotics of solutions of parabolic equations on unbounded domains, Nonlinear Anal., Theory Methods Appl. 33 (1998), no. 5, 483–507.
  • J.-P. Eckmann and G. Schneider, Nonlinear stability of bifurcating front solutions for the Taylor-Couette problem, ZAMM Z. Angew. Math. Mech. 80 (2000), no. 11-12, 745–753, Special issue on the occasion of the 125th anniversary of the birth of Ludwig Prandtl.
  • —, Non-linear stability of modulated fronts for the Swift-Hohenberg equation, Comm. Math. Phys. 225 (2002), no. 2, 361–397.
  • L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.
  • W. Eckhaus and A. van Harten, The inverse scattering transformation and the theory of solitons. An introduction, North-Holland Mathematics Studies, vol. 50, North-Holland Publishing Co., Amsterdam, 1981.
  • J.-P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem, Comm. Math. Phys. 136 (1991), no. 2, 285–307.
  • —, The nonlinear stability of front solutions for parabolic partial differential equations, Comm. Math. Phys. 136 (1994), 285–307.
  • J.-P. Eckmann, C. E. Wayne, and P. Wittwer, Geometric stability analysis of periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 190 (1997), 173–211.
  • C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation, The millennium prize problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 57–67.
  • N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98.
  • K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Commun. Pure Appl. Math. 7 (1954), 517–550.
  • G. Fibich, The nonlinear Schrödinger equation. singular solutions and optical collapse, Applied Mathematical Sciences, vol. 192, Springer, Cham, 2015.
  • R. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937), 355–369.
  • R. FitzHugh, Mathematical models of excitation and propagation in nerve, H.P. Schwan, ed., Biological Engineering, 1969, pp. 1–85.
  • A. S. Fokas and Q. M. Liu, Asymptotic integrability of water waves, Phys. Rev. Lett. 77 (1996), no. 12, 2347–2351.
  • R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics. Vol. 2: Mainly electromagnetism and matter, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964.
  • W. E. Fitzgibbon, J. J. Morgan, and S. J. Waggoner, Weakly coupled semilinear parabolic evolution systems, Ann. Mat. Pura Appl. (4) 161 (1992), 213–229.
  • A. C. Fowler, Mathematical models in the applied sciences, Cambridge University Press, 1997.
  • E. Fermi, J. Pasta, and S. M. Ulam, Studies in nonlinear problems, Technical Report Los Alamos Sci. Lab.., 1955.
  • C. Foias, R. Rosa, O. Manley, and R. Temam, Navier-Stokes equations and turbulence, Cambridge: Cambridge University Press, 2001.
  • Th. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity 7 (1994), no. 3, 741–764.
  • G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, second ed., Springer Monographs in Mathematics, Springer, New York, 2011.
  • T. W. Gamelin, Complex analysis, New York, NY: Springer, 2001.
  • D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler, and D. A. Behrens, Optimal control of nonlinear processes: With applications in drugs, corruption, and terror, Springer Verlag, 2008.
  • S. G. Georgiev, Theory of distributions, Springer, Cham, 2015.
  • C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133.
  • J. Guckenheimer and Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer, New York, 1983.
  • M. D. Groves and M. Haragus, A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci. 13 (2003), no. 4, 397–447.
  • M. D. Groves, M. Haragus, and S. M. Sun, A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (2002), no. 1799, 2189–2243, Recent developments in the mathematical theory of water waves (Oberwolfach, 2001).
  • B. Grébert and Th. Kappeler, The defocusing NLS equation and its normal form, Zürich: European Mathematical Society (EMS), 2014.
  • V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 20 (1950), 1064.
  • I. M. Gelf́and and B. M. Levitan, On the determination of a differential equation from its spectral function, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 309–360 (Russian).
  • J. Gleick, Chaos - die Ordnung des Universums, Knaur, 1988.
  • A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30–39.
  • Th. Gallay and A. Mielke, Diffusive mixing of stable states in the Ginzburg-Landau equation, Comm. Math. Phys. 199 (1998), 71–97.
  • P. Germain, N. Masmoudi, and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2) 175 (2012), no. 2, 691–754.
  • Yan Guo and Xueke Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 673–710.
  • S. Gilg, D. E. Pelinovsky, and G. Schneider, Validity of the NLS approximation for periodic quantum graphs, Nonl. Diff. Eq. and Appl. (2017), to appear.
  • M. Ghergu and V. D. Radulescu, Nonlinear PDEs, mathematical models in biology, chemistry and population genetics, Springer Monographs in Mathematics, Springer, Heidelberg, 2012.
  • P. Grindrod, The theory and applications of reaction-diffusion equations, patterns and waves, second ed., The Clarendon Press, Oxford University Press, New York, 1996.
  • P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor, Chemical Engineering Science 38 (1983).
  • M. Golubitsky and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I, Applied Mathematical Sciences, vol. 51, Springer-Verlag, New York, 1985.
  • Th. Gallay and G. Schneider, KP description of unidirectional long waves. The model case, Proc. R. Soc. Edinb., Sect. A, Math. 131 (2001), no. 4, 885–898.
  • M. D. Groves and G. Schneider, Modulating pulse solutions for a class of nonlinear wave equations, Commun. Math. Phys. 219 (2001), no. 3, 489–522.
  • M. Golubitsky and I. Stewart, The symmetry perspective. From equilibrium to chaos in phase space and physical space, Progress in Mathematics, vol. 200, Birkhäuser Verlag, Basel, 2002.
  • M. D. Groves and G. Schneider, Modulating pulse solutions for quasilinear wave equations, J. Differ. Equations 219 (2005), no. 1, 221–258.
  • —, Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales, Commun. Math. Phys. 278 (2008), no. 3, 567–625.
  • Th. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems, Trans. Am. Math. Soc. 363 (2011), no. 5, 2571–2598.
  • M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, vol. 69, Springer-Verlag, New York, 1988.
  • Th. Gallay, G. Schneider, and H. Uecker, Stable transport of information near essentially unstable localized structures, DCDS–B 4 (2004), no. 2, 349–390.
  • D. Grass and H. Uecker, Optimal management and spatial patterns in a distributed shallow lake model, Electr. J. Differential Equations 2017 (2017), no. 1, 1–21.
  • A. Guthmann, Einführung in die Himmelsmechanik und Ephemeridenrechnung, Spektrum–Hochschultaschenbuch, 1994.
  • Th. Gallay and C. E. Wayne, Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Comm. Math. Phys. 255 (2005), no. 1, 97–129.
  • —, Long-time asymptotics of the Navier-Stokes equation in $\Bbb R^2$ and $\Bbb R^3$ [Plenary lecture presented at the 76th Annual GAMM Conference, Luxembourg, 29 March–1 April 2005], ZAMM Z. Angew. Math. Mech. 86 (2006), no. 4, 256–267.
  • —, Three-dimensional stability of Burgers vortices: the low Reynolds number case, Phys. D 213 (2006), no. 2, 164–180.
  • J. K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988.
  • M. Hamer, Solitary killers, New Scientist 163 (1999), 18–19.
  • D. Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Commun. Math. Phys. 324 (2013), no. 3, 961–993.
  • M. Haragus-Courcelle and G. Schneider, Bifurcating fronts for the Taylor Couette problem in infinite cylinders, ZAMP 50 (1999), no. 1, 120–151.
  • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, Vol. 840, 1981.
  • M. Haragus and G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext. London: Springer; Les Ulis: EDP Sciences. xi, 329 p. , 2011.
  • J. K. Hale and H. Kocak, Dynamics and bifurcations, Springer-Verlag, 1991.
  • F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ${\mathbb R}^N$, Arch. Ration. Mech. Anal. 157 (2001), no. 2, 91–163.
  • S. Hata, H. Nakao, and A. S. Mikhailov, Sufficient conditions for wave instability in three-component reaction-diffusion systems, Prog. Theor. Exp. Phys. (2014), 013A01.
  • Y. Hayase and T. Ohta, Sierpinski gasket in a reaction–diffusion system, Phys. Rev. Let. 81 (1998), 1726.
  • —, Self-replicating pulses and Sierpinski gaskets in excitable media, Phys. Rev. E 62 (2000), 5998–6003.
  • L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Berlin, 1983.
  • D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein. 105 (2003), no. 3, 103–165.
  • —, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein. 106 (2004), no. 2, 51–69.
  • R. B. Hoyle, Pattern formation. An introduction to methods, Cambridge University Press, Cambridge, 2006.
  • J. K. Hale, L. A. Peletier, and W. C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math. 61 (2000), no. 1, 102–130.
  • J. Hale and G. Raugel, Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dyn. Differ. Equations 2 (1990), no. 1, 19–67.
  • M. Haragus and A. Scheel, Dislocations in an anisotropic Swift-Hohenberg equation, Comm. Math. Phys. 315 (2012), no. 2, 311–335.
  • M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, second ed., vol. 60, Elsevier/Academic Press, Amsterdam, 2004.
  • T. Häcker, G. Schneider, and H. Uecker, Self-similar decay to the marginally stable ground state in a model for film flow over inclined wavy bottoms, Electr. J. Diff. Eq. 61 (2012), 1–51.
  • T. Häcker, G. Schneider, and D. Zimmermann, Justification of the Ginzburg-Landau approximation in case of marginally stable long waves, J. Nonlinear Sci. 21 (2011), no. 1, 93–113.
  • K.-H. Hoffmann and Qi Tang, Ginzburg-Landau Phase Transition Theory and Superconductivity, International Series of Numerical Mathematics, Birkhäuser, 2000.
  • H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011, Reprint of the 1994 edition.
  • G. Iooss and M. Adelmeyer, Topics in bifurcation theory and applications. 2nd ed., Advanced Series in Nonlinear Dynamics. 3. Singapore: World Scientific. viii, 186 p., 1998.
  • T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves, Funkcial. Ekvac. 44 (2001), no. 2, 219–241.
  • G. Iooss and K. Kirchgaessner, Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. (Bifurcation of solitary waves, for a low surface tension), C. R. Acad. Sci., Paris, Ser. I 311 (1990), 265–268 (French).
  • G. Iooss and A. Mielke, Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders, J. Nonlinear Sci. 1 (1991), no. 1, 107–146.
  • G. Iooss, Capillary-gravity water-waves problem as a dynamical system, A. Mielke (ed.) et al., Structure and dynamics of nonlinear waves in fluids. Proceedings of the IUTAM/ ISIMM symposium, Hannover, Germany, August 17-20, 1994. Singapore: World Scientific. Adv. Ser. Nonlinear Dyn. 7, 42-57 (1995), 1995.
  • —, Travelling water-waves, as a paradigm for bifurcations in reversible infinite dimensional “dynamical” systems, Doc. Math., J. DMV (1998), 611–622.
  • S. Iyer and B. Sandstede, Mixing in Reaction-Diffusion Systems: Large Phase Offsets, arXiv:1610.06527, 2016.
  • G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci. 13 (2003), no. 1, 27–63.
  • C. K. R. T. Jones, R. Gardner, and T. Kapitula, Stability of travelling waves for non-convex scalar viscous conservation laws, Commun. Pure Appl. Math. 46 (1993), no. 4, 505–526.
  • F. John and S. Klainerman., Almost global existence to nonlinear wave equations in three space dimensions, Commun. Pure Appl. Math. 37 (1984), 443–455.
  • M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, Invent. Math. 197 (2014), no. 1, 115–213.
  • F. John, Partial differential equations, Springer, 1991.
  • R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63–82.
  • C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc. 286 (1984), no. 2, 431–469.
  • B. Jakobsen and F. Rosendahl, The Sleipner Platform Accident, Structural Engineering International 4 (1994), no. 3, 190–193.
  • M. A. Johnson and K. Zumbrun, Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case, J. Differ. Equations 249 (2010), no. 5, 1213–1240.
  • —, Nonlinear stability of periodic traveling-wave solutions of viscous conservation laws in dimensions one and two, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 1, 189–211.
  • L. A. Kalyakin, Asymptotic decay of a one-dimensional wavepacket in a nonlinear dispersive medium, Math. USSR Sbornik 60 (1988), no. 2, 457–483.
  • —, Long wave asymptotics. Integrable equations as asymptotic limits of non- linear systems, Russ. Math. Surv. 44 (1989), no. 1, 3–42.
  • T. Kapitula, On the nonlinear stability of plane waves for the Ginzburg-Landau equation, Commun. Pure Appl. Math. 47 (1994), no. 6, 831–841.
  • —, On the stability of travelling waves in weighted $L^ \infty$ spaces, J. Differ. Equations 112 (1994), no. 1, 179–215.
  • T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 25–70. Lecture Notes in Math., Vol. 448.
  • —, The Cauchy problem for the Korteweg-de Vries equation, Nonlinear partial differential equations and their applications, Res. Notes in Math., vol. 53, Pitman, 1981, pp. 293–307.
  • —, Perturbation theory for linear operators. Reprint of the corr. print. of the 2nd ed. 1980, reprint of the corr. print. of the 2nd ed. 1980 ed., Berlin: Springer-Verlag, 1995.
  • T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan (1972), 260–264.
  • G. Kozyreff and S. J. Chapman, Analytical results for Front Pinning between an Hexagonal Pattern and a Uniform State in Pattern-Formation Systems, Phys. Rev. Letters 111(5) (2013), 054501.
  • E. Knobloch and J. De Luca, Amplitude equations for travelling wave convection, Nonlinearity 3 (1990), no. 4, 975–980.
  • D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in the rectangular canal and a new type of long stationary waves, Phil.Magaz. 39 (1895), 422–443.
  • J. P. Keener, Principles of applied mathematics, Addison-Wesley, 1988.
  • H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, Application of bifurcation theory, Proc. adv. Semin., Madison/Wis. 1976, 359-384, 1977.
  • S. H. Kellert, In the wake of chaos. Unpredictable order in dynamical systems, Science and its Conceptual Foundations, University of Chicago Press, Chicago, IL, 1993.
  • A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1997.
  • K. Kirchgaessner, Wave-solutions of reversible systems and applications, J. Differ. Equations 45 (1982), 113–127.
  • T. Kano and T. Nishida, Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ. 19 (1979), no. 2, 335–370.
  • —, A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math. 23 (1986), no. 2, 389–413.
  • E. Knobloch, Nonlocal amplitude equations, Pattern formation in complex dissipative systems (Kitakyushu, 1991), World Sci. Publ., River Edge, NJ, 1992, pp. 263–274.
  • H. Koch, Nonlinear dispersive equations, H. Koch, D. Tartaru, M. Visan, eds, Dispersive Equations and Nonlinear Waves, Birkhäuser, 2015.
  • A. Kolmogoroff, Sur la convergence des séries de fonctions orthogonales, Math. Z. 26 (1927), no. 1, 432–441.
  • T. Kappeler and J. Pöschel, KdV & KAM, Springer., 2003.
  • T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013.
  • A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème boilogique, Bulletin Université d’Etat a Moscou A 1 (1937), 1–26.
  • C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323–347.
  • U. Krengel, Ergodic theorems, De Gruyter Studies in Mathematics 6. Berlin-New York: Walter de Gruyter. VIII, 1985.
  • M. Kunze and G. Schneider, Estimates for the KdV-limit of the Camassa-Holm equation, Lett. Math. Phys. 72 (2005), no. 1, 17–26.
  • P. Kirrmann, G. Schneider, and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 1-2, 85–91.
  • P. Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications. 60. Basel: Birkhäuser Verlag, 1993.
  • C. Kuehn, Multiple time scale dynamics, Applied Mathematical Sciences, vol. 191, Springer, Cham, 2015.
  • Y. Kuramoto, Instability and turbulence of wavefronts in reaction-diffusion systems, Prog. Theor. Phys. 63 (1980), no. 6, 1885–1903.
  • —, Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, Vol. 19, Berlin etc.: Springer-Verlag. VIII, 156 p, 1984.
  • Y. A. Kuznetsov, Elements of applied bifurcation theory. 3rd ed., Springer, 2004.
  • Y. Kuramoto and T. Yamada, Pattern formation in oscillatory chemical reactions, Prog. Theoret. Phys. 56 (1976), no. 3, 724–740.
  • D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005), no. 3, 605–654.
  • —, The water waves problem. Mathematical analysis and asymptotics, Providence, RI: American Mathematical Society (AMS), 2013.
  • M. Lappa, Thermal convection: patterns, evolution and stability, John Wiley & Sons, Ltd., Chichester, 2010.
  • I. D. Lawrie, A unified grand tour of theoretical physics, Adam Hilger Ltd., Bristol, 1990.
  • P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), 467–490.
  • V. Lescarret, C. Blank, M. Chirilus-Bruckner, Chr. Chong, and G. Schneider, Standing generalized modulating pulse solutions for a nonlinear wave equation in periodic media, Nonlinearity 22 (2009), no. 8, 1869–1898.
  • I. Lengyel and I. R. Epstein, Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science 251 (1991), 650–652.
  • P. G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century, Boca Raton, FL: CRC Press, 2016.
  • J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248.
  • R. J. LeVeque, Numerical methods for conservation laws, second ed., Birkhäuser Verlag, Basel, 1992.
  • L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Physik (“Landau-Lifschitz”). Band VI, fifth ed., Akademie-Verlag, Berlin, 1991, Hydrodynamik. [Hydrodynamics], Translated from the Russian by Wolfgang Weller and Adolf Kühnel, Translation edited by Weller and with a foreword by Weller and P. Ziesche.
  • D. Lannes, F. Linares, and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs. In part selected papers based on the presentations at a meeting, Bertinoro, Italy, September 2011, New York, NY: Birkhäuser/Springer, 2013, pp. 181–213.
  • J. D. Logan, Applied partial differential equations, Undergraduate Texts in Mathematics, Springer, Cham, 2015, Third edition.
  • —, A first course in differential equations, Undergraduate Texts in Mathematics, Springer, Cham, 2015, Third edition.
  • E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. (1963).
  • F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, New York, NY: Springer, 2009.
  • D. J. B. Lloyd, B. Sandstede, D. Avitabile, and A. R. Champneys, Localized hexagon patterns of the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 3, 1049–1100.
  • A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995.
  • S. Lynch, Dynamical systems with applications using MATLAB, Birkhäuser, 2004.
  • B. B. Mandelbrot, Die fraktale Geometrie der Natur, Birkhaeuser, 1991.
  • P. Manneville, Dissipative structures and weak turbulence, Academic Press, 1992.
  • V. A. Marchenko, On the reconstruction of the potential energy from phases of the scattered waves, Dokl. Akad. Nauk SSSR 104 (1955), 695–698 (Russian).
  • P. A. Markowich, Applied partial differential equations: a visual approach, Springer, Berlin, 2007.
  • Vl. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, 2011.
  • A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002.
  • W. W. Mohammed, D. Blömker, and K. Klepel, Multi-scale analysis of SPDEs with degenerate additive noise, J. Evol. Equ. 14 (2014), no. 1, 273–298.
  • I. Melbourne, Derivation of the time-dependent Ginzburg-Landau equation on the line, J. Nonlinear Sci. 8 (1998), no. 1, 1–15.
  • —, Ginzburg-Landau theory and symmetry, Nonlinear instability, chaos and turbulence, Vol. II, Adv. Fluid Mech., vol. 25, WIT Press, Southampton, 2000, pp. 79–109.
  • E. Meron, Nonlinear physics of ecosystems, CRC Press, 2015.
  • K. R. Meyer and G. R. Hall, Introduction to hamiltonian dynamical systems and the n-body problem, Springer-Verlag, 1992.
  • A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci. 10 (1988), no. 1, 51–66.
  • —, Reduction of PDEs on domains with several unbounded directions: a first step towards modulation equations, Z. Angew. Math. Phys. 43 (1992), no. 3, 449–470.
  • —, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997), no. 1, 199–222.
  • —, Instability and stability of rolls in the Swift–Hohenberg equation, Comm. Math. Phys. 189 (1997), 829–853.
  • —, Mathematical analysis of sideband instabilities with application to Rayleigh–Bénard convection, J. Nonlinear Science 7 (1997), 57–99.
  • —, Bounds for the solutions of the complex Ginzburg-Landau equation in terms of the dispersion parameters, Physica D 117 (1998), no. 1-4, 106–116.
  • —, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of dynamical systems, Vol. 2, North-Holland, 2002, pp. 759–834.
  • P. D. Miller, Applied asymptotic analysis, Graduate Studies in Mathematics, vol. 75, American Mathematical Society, Providence, RI, 2006.
  • R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204.
  • J. Müller and Chr. Kuttler, Methods and models in mathematical biology. Deterministic and stochastic approaches, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Heidelberg, 2015.
  • R. S. MacKay and J. D. Meiss (eds.), Hamiltonian dynamical systems. A reprint selection, IOP Publishing Ltd. Bristol, 1987.
  • N. Masmoudi and K. Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, 975–1008.
  • —, Multifrequency NLS scaling for a model equation of gravity-capillary waves, Commun. Pure Appl. Math. 66 (2013), no. 8, 1202–1240.
  • J. H. Maddocks and R. L. Sachs, On the stability of KdV multi-solitons, Commun. Pure Appl. Math. 46 (1993), no. 6, 867–901.
  • A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains - existence and comparison, Nonlinearity 8 (1995), no. 5, 743–768.
  • I. Melbourne and G. Schneider, Phase dynamics in the complex Ginzburg-Landau equation, J. Differ. Equations 199 (2004), no. 1, 22–46.
  • —, Phase dynamics in the real Ginzburg-Landau equation, Math. Nachr. 263-264 (2004), 171–180.
  • A. Mielke, G. Schneider, and H. Uecker, Stability and diffusive dynamics on extended domains, Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 563–583.
  • K. Matthies and H. Uecker, Low regularity justification results for envelope approximations of nonlinear wave packets in periodic media, Asymptotic Anal. 99 (2016), no. 1-2, 53–65.
  • J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.
  • L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305–317.
  • V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splošn. Sredy 254 (1974), no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, 104–210.
  • A. C. Newell, Solitons in mathematics and physics, vol. 48, CBMS-NSF Reg. Conf. Ser. Appl. Math., 1985.
  • —, Short pulse evolution equation, Laser filamentation, CRM Ser. Math. Phys., Springer, Cham, 2016, pp. 1–17.
  • Y. Nishiura, Far-from-equilibrium dynamics, Translations of Mathematical Monographs, vol. 209, American Mathematical Society, Providence, RI, 2002.
  • A. A. Ntinos, Lengths of instability intervals of second order periodic differential equations, Quart. J. Math. Oxford (2) 27 (1976), no. 107, 387–394.
  • Y. Nishiura, T. Teramoto, X. Yuan, and Kei-Ichi Ueda, Dynamics of traveling pulses in heterogeneous media, Chaos 17 (2007), no. 3, 037104, 21.
  • A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969), 279–303.
  • I. Oprea and G. Dangelmayr, Dynamics and bifurcations in the weak electrolyte model for electroconvection of nematic liquid crystals: a Ginzburg-Landau approach, Eur. J. Mech., B, Fluids 27 (2008), no. 6, 726–749.
  • P. J. Olver, Introduction to partial differential equations, Undergraduate Texts in Mathematics, Springer, Cham, 2014.
  • A. R. Osborne, Nonlinear ocean waves and the inverse scattering transform, International Geophysics Series 97. Amsterdam: Elsevier/Academic Press. xxvi, 2010.
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
  • D. E. Pelinovsky, Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation, London Mathematical Society Lecture Note Series 390. Cambridge: Cambridge University Press. x, 398 p., 2011.
  • L. M. Pismen, Patterns and interfaces in dissipative dynamics, Springer Series in Synergetics, Springer-Verlag, Berlin, 2006.
  • H.-O. Peitgen, H. Jürgens, and D. Saupe, Fractals for the classroom. Part 2: Complex systems and the Mandelbrot set, Springer, 1992.
  • I. Prigogine and R. Lefever, Symmetry breaking bifurcations in dissipative systems II, J. Chem. Phys. 48 (1968), 1665–1700.
  • H. Poincaré, Les methodes nouvelles de la mecanique celeste, Dover Publications, 1957.
  • Y. Pomeau, Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D 23 (1986), 3–11.
  • D. Pelinovsky and G. Schneider, Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential, Appl. Anal. 86 (2007), no. 8, 1017–1036.
  • D. Pelinovsky and G. Schneider, Rigorous justification of the short-pulse equation, NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), no. 3, 1277–1294.
  • M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984.
  • R. D. Pierce and C. E. Wayne, On the validity of mean field amplitude equations for counterpropagating wavetrains, Nonlinearity 8 (1996), 433–457.
  • R. Racke, Lectures on nonlinear evolution equations. Initial value problems, Braunschweig etc.: Vieweg, 1992.
  • T. Radko, Double-diffusive convection, Cambridge University Press, Cambridge, 2013.
  • J. Rauch, Partial differential equations, Graduate Texts in Mathematics. 128. New York etc.: Springer-Verlag. x, 263 p. with 42 ill. , 1991.
  • Lord Rayleigh, On waves, Phil.Magaz. 1 (1876).
  • M. Renardy, A centre manifold theorem for hyperbolic PDEs, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3-4, 363–377.
  • —, Mathematical analysis of viscoelastic flows, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 73, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
  • J. C. Robinson, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
  • —, An introduction to ordinary differential equations, Cambridge University Press. , 2004.
  • R. C. Robinson, An introduction to dynamical systems. Continuous and discrete, Prentice Hall, 2004.
  • O. Rössler, An equation for continuous chaos, Physics Letters A 57 (1976), 397–398.
  • M. Renardy and R. C. Rogers, An introduction to partial differential equations, second ed., Texts in Applied Mathematics, vol. 13, Springer-Verlag, New York, 2004.
  • M. Reed and B. Simon, Methods of modern mathematical physics. Four volumes, Academic Press, 1975.
  • —, Methods of modern mathematical physics. II: Fourier analysis, self- adjointness, Academic Press, 1975.
  • D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys. 20 (1971), 167–192.
  • W. Rudin, Functional analysis, McGraw-Hill, 1973.
  • D. Ruelle, Chaotic evolution and strange attractors. the statistical analysis of time series for deterministic nonlinear systems, notes prepared and with a foreword by S. Isola, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1989.
  • J. S. Russell, Report on waves, Rep. 14th Meet. Brit. Assoc. Sci. (1844), 311–390.
  • S. Salsa, Partial differential equations in action. From modelling to theory, Universitext, Springer-Verlag Italia, Milan, 2008.
  • B. Sandstede, Stability of travelling waves, Handbook of dynamical systems. Volume 2, Amsterdam: Elsevier, 2002, pp. 983–1055.
  • D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math. 22 (1976), no. 3, 312–355.
  • B. Scarpellini, Stability, instability, and direct integrals, Chapman & Hall, 1999.
  • J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theoret. Biol. 81 (1979), no. 3, 389–400.
  • G. Schneider, Error estimates for the Ginzburg-Landau approximation, ZAMP 45 (1994), 433–457.
  • —, Global existence via Ginzburg-Landau formalism and pseudo-orbits of Ginzburg-Landau approximations, Comm. Math. Phys. 164 (1994), 157–179.
  • —, A new estimate for the Ginzburg-Landau approximation on the real axis, J. Nonlinear Sci. 4 (1994), no. 1, 23–34.
  • —, Analyticity of Ginzburg-Landau modes, J. Diff. Eqns. 121 (1995), 233–257.
  • —, Validity and Limitation of the Newell-Whitehead equation, Math. Nachr. 176 (1995), 249–263.
  • —, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 178 (1996), 679–702.
  • —, Limits for the Korteweg-de Vries-Approximation, CIAM/GAMM 95 Applied Analysis, ZAMM - Journal of Applied Mathematics and Mechanics 76 (1996), no. S2, 341–344.
  • —, The validity of generalized Ginzburg-Landau equations, Math. Methods Appl. Sci. 19 (1996), no. 9, 717–736.
  • —, Justification of mean-field coupled modulation equations, Proc. Royal Soc. Edinb. 127 (1997), no. A, 639–650.
  • —, Approximation of the Korteweg-de Vries equation by the Nonlinear Schrödinger equation, JDE 147 (1998), 333–354.
  • —, Hopf bifurcation in spatially extended reaction-diffusion systems, J. Nonlinear Sci. 8 (1998), no. 1, 17–41.
  • —, Justification of modulation equations for hyperbolic systems via normal forms, NoDEA 5 (1998), 69–82.
  • —, Nonlinear stability of Taylor-vortices in infinite cylinders, Arch. Rat. Mech. Anal. 144 (1998), no. 2, 121–200.
  • —, Cahn-Hilliard description of secondary flows of a viscous incompressible fluid in an unbounded domain, ZAMM Z. Angew. Math. Mech. 79 (1999), no. 9, 615–626.
  • —, Global existence results in pattern forming systems - Applications to 3D Navier-Stokes problems -, J. Math. Pures Appl., IX 78 (1999), 265–312.
  • —, Some characterizations of the Taylor-Couette attractor, Differential Integral Equations 12 (1999), no. 6, 913–926.
  • —, Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances, J. Diff. Eq. 216 (2005), no. 2, 354–386.
  • —, Bounds for the nonlinear Schrödinger approximation of the Fermi-Pasta-Ulam system, Appl. Anal. 89 (2010), no. 9, 1523–1539.
  • —, Justification of the NLS approximation for the KdV equation using the Miura transformation, Adv. Math. Phys. (2011), Art. ID 854719, 4.
  • R. Schnaubelt, Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions, Discrete Contin. Dyn. Syst. 35 (2015), no. 3, 1193–1230.
  • R. Schielen and A. Doelman, Modulation equations for spatially periodic systems: derivation and solutions, SIAM J. Appl. Math. 58 (1998), no. 6, 1901–1930.
  • L. A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, Journal of Fluid Mechanics 38(1) (1969), 203–224.
  • D. Serre, Systems of conservation laws. I: Hyperbolicity, entropies, shock waves, Cambridge: Cambridge University Press. xxii, 263 p., 1999.
  • —, Systems of conservation laws 2. Geometric structures, oscillations, and initial-boundary value problems, Cambridge: Cambridge University Press. xi, 269 p., 2000.
  • S. Serfaty, Coulomb gases and Ginzburg-Landau vortices, Zürich: European Mathematical Society (EMS), 2015.
  • R. Seydel, Practical bifurcation and stability analysis. 3rd ed., Springer, 2010.
  • A. A. Samarskii, V. Galaktionov, S. Kurdyumov, and A. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter, 1995.
  • J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Physical Review A 15 (1977), no. 1, 319–328.
  • P. J. Schmid and D. S. Henningson, Optimal energy density growth in Hagen-Poiseuille flow, J. Fluid Mech. 277 (1994), 197–225.
  • Y. Shi and J. E. Hearst, The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling, J. Chem. Phys. 101 (1994), no. 6, 5186–5200.
  • A. M. Stuart and A. R. Humphries, Dynamical systems and numerical analysis, Cambridge: Cambridge University Press, 1996.
  • J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685–696.
  • J. Shatah, Space-time resonances, Q. Appl. Math. 68 (2010), no. 1, 161–167.
  • A. Shepeleva, On the validity of the degenerate Ginzburg-Landau equation, Math. Methods Appl. Sci. 20 (1997), no. 14, 1239–1256.
  • M. Shinbrot, The initial value problem for surface waves under gravity. I. The simplest case, Indiana Univ. Math. J. 25 (1976), no. 3, 281–300.
  • L. P. Sil’nikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR 160 (1965), 558–561.
  • G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I - Derivation of basic equations, Acta Astronautica 4 (1977), 1177–1206.
  • J. Smoller, Shock waves and reaction-diffusion equations, Springer, New York, 1994.
  • C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, Applied Mathematical Sciences, 41. Springer-Verlag, 1982.
  • X. Saint Raymond, A simple Nash-Moser implicit function theorem, Enseign. Math. (2) 35 (1989), no. 3-4, 217–226.
  • P. L. Sachdev and Ch. Srinivasa Rao, Large time asymptotics for solutions of nonlinear partial differential equations, Springer Monographs in Mathematics, Springer, New York, 2010.
  • B. Sandstede and A. Scheel, Essential instability of pulses and bifurcations to modulated travelling waves, Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), no. 6, 1263–1290.
  • C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation, Springer-Verlag, New York, 1999.
  • B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. D 145 (2000), no. 3-4, 233–277.
  • E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Basel: Birkhäuser, 2007.
  • B. Sandstede, A. Scheel, G. Schneider, and H. Uecker, Diffusive mixing of periodic wave trains in reaction-diffusion systems, J. Differ. Equations 252 (2012), no. 5, 3541–3574.
  • B. Sandstede, A. Scheel, and C. Wulff, Bifurcations and dynamics of spiral waves, J. Nonlinear Sci. 9 (1999), no. 4, 439–478.
  • G. Schneider, Danish Ali Sunny, and D. Zimmermann, The NLS approximation makes wrong predictions for the water wave problem in case of small surface tension and spatially periodic boundary conditions, J. Dyn. Differ. Equations 27 (2015), no. 3-4, 1077–1099.
  • E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy, Princeton, NJ: Princeton University Press, 1993.
  • I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. Von Freymann, and M. Wegener, Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths, Optics letters 35 (2010), no. 7, 1094–1096.
  • D. J. Struik, Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie, Math. Ann. 95 (1926), 595–634 (French).
  • W. A. Strauss, Nonlinear wave equations. Expository lectures from the CBMS regional conference held at George Mason University, January 16-22, 1989, Providence, RI: American Mathematical Society, 1989.
  • W. A. Strauss, Partial differential equations - an introduction, John Wiley & Sons Inc., New York, 1992.
  • S. H. Strogatz, Nonlinear dynamics and chaos, Perseus, New York, 1994.
  • B. Straughan, The energy method, stability, and nonlinear convection, second ed., Applied Mathematical Sciences, vol. 91, Springer-Verlag, New York, 2004.
  • —, Stability and wave motion in porous media, Applied Mathematical Sciences, vol. 165, Springer, New York, 2008.
  • G. Schneider and H. Uecker, Nonlinear coupled mode dynamics in hyperbolic and parabolic periodically structured spatially extended systems, Asymptotic Anal. 28 (2001), no. 2, 163–180.
  • —, Almost global existence and transient self similar decay for Poiseuille flow at criticality over exponentially long times, Physica D 185 (2003), no. 3-4, 209–226.
  • —, Existence and stability of exact pulse solutions for Maxwell’s equations describing nonlinear optics, ZAMP 54 (2003), 677–712.
  • —, The amplitude equations for the first instability of electro-convection in nematic liquid crystals in the case of two unbounded space directions, Nonlinearity 20 (2007), no. 6, 1361–1386.
  • G. Schneider, H. Uecker, and M. Wand, Interaction of modulated pulses in nonlinear oscillator chains, J. Difference Equ. Appl. 17 (2011), no. 3, 279–298.
  • S. Salsa, F. M. G. Vegni, A. Zaretti, and P. Zunino, A primer on PDEs. Models, methods, simulations. , Milano: Springer, 2013.
  • T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D 196 (2004), no. 1-2, 90–105.
  • G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, International conference on differential equations. Proceedings of the conference, Equadiff ’99, Berlin, Germany, August 1–7, 1999. Vol. 1, Singapore: World Scientific, 2000, pp. 390–404.
  • —, The long wave limit for the water wave problem I. The case of zero surface tension, Comm. Pure. Appl. Math. 53 (2000), no. 12, 1475–1535.
  • —, Kawahara dynamics in dispersive media, Phys. D 152/153 (2001), 384–394, Advances in nonlinear mathematics and science.
  • —, The rigorous approximation of long-wavelength capillary-gravity waves, Arch. Rat. Mech. Anal. 162 (2002), 247–285.
  • —, Justification of the NLS approximation for a quasilinear water wave model, J. Differential Equations 251 (2011), no. 2, 238–269.
  • G. Schneider and D. Zimmermann, Justification of the Ginzburg-Landau approximation for an instability as it appears for Marangoni convection, Math. Methods Appl. Sci. 36 (2013), no. 9, 1003–1013.
  • T. Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, CBMS, Washington, DC, 2006.
  • —, Why global regularity for Navier-Stokes is hard, Structure and Randomness: Pages from Year One of a Mathematical Blog, AMS, 2009.
  • M. E. Taylor, Partial differential equations. 3 volumes, Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
  • P. Takáč, P. Bollerman, A. Doelman, A. van Harten, and E. S. Titi, Analyticity of essentially bounded solutions to semilinear parabolic systems and validity of the Ginzburg-Landau equation, SIAM J. Math. Anal. 27 (1996), no. 2, 424–448.
  • R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, second ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
  • —, Navier-Stokes equations, AMS, Providence, RI, 2001.
  • G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140, American Mathematical Society, Providence, RI, 2012.
  • W. Thirring, Lehrbuch der mathematischen Physik, Band 1: Klassische dynamische Systeme, Springer-Verlag, 1988.
  • R. Temam and A. M. Miranville, Mathematical modelling in continuum mechanics, Cambridge University Press, 2005.
  • N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Commun. Math. Phys. 335 (2015), no. 1, 369–443.
  • W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), no. 1, 53–117.
  • A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B 237 (1952), 37–72.
  • N. Totz and Sijue Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Commun. Math. Phys. 310 (2012), no. 3, 817–883.
  • Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), no. 9, 3165–3183.
  • D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equations, Discrete Contin. Dyn. Syst. 28 (2010), no. 4, 1713–1751.
  • H. Uecker, Diffusive stability of rolls in the two-dimensional real and complex Swift-Hohenberg equation, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2109–2146.
  • —, Approximation of the Integral Boundary Layer equation by the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math. 63 (2003), no. 4, 1359–1377.
  • —, Self-similar decay of spatially localized perturbations of the Nusselt solution for the inclined film problem, Arch. Ration. Mech. Anal. 184 (2007), no. 3, 401–447.
  • —, A short ad hoc introduction to spectral methods for parabolic PDE and the Navier-Stokes equations, Modern Computational Science 09 (R. Leidl and A. Hartmann, eds.), Universitätsverlag Oldenburg, Oldenburg, 2009, pp. 169–212.
  • —, Optimal harvesting and spatial patterns in a semi arid vegetation system, Natural Resource Modelling 29 (2016), no. 2, 229–258.
  • H. Uecker, D. Grieser, Z. Sobirov, D. Babajanov, and D. Matrasulov, Soliton transport in tubular networks: transmission at vertices in the shrinking limit, Phys. Rev. E 91 (2015), 023209.
  • H. Uecker and D. Wetzel, Numerical results for snaking of patterns over patterns in some 2D Selkov-Schnakenberg Reaction-Diffusion systems, SIADS 13-1 (2014), 94–128.
  • H. Uecker, D. Wetzel, and J. Rademacher, pde2path – a Matlab package for continuation and bifurcation in 2D elliptic systems, NMTMA 7 (2014), 58–106, see also www.staff.uni-oldenburg.de/hannes.uecker/pde2path.
  • A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 89–169.
  • A. Vasy, Partial differential equations. An accessible route through theory and applications., Providence, RI: American Mathematical Society (AMS), 2015.
  • B. Van der Pol, On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. & J. of Sci. 2 (1926), no. 7, 978–992.
  • F. Verhulst, Nonlinear differential equations and dynamical systems, second ed., Springer-Verlag, Berlin, 1996.
  • A. van Harten, On the validity of Ginzburg-Landau’s equation, J. Nonlinear Science 1 (1991), 397–422.
  • A. Vanderbauwhede and G. Iooss, Center manifolds in infinite dimensions, Springer, Dynamics reported 1 (1992), 125–163.
  • W. van Saarloos, The complex Ginzburg-Landau equation for beginners, Spatio-temporal patterns in nonequilibrium complex systems (Santa Fe, NM, 1993), Santa Fe Inst. Stud. Sci. Complexity Proc., XXI, Addison-Wesley, Reading, MA, 1995, pp. 19–31.
  • W. van Saarloos, Front propagation into unstable states, Physics Reports 386 (2003), 29–222.
  • W. van Saarloos and P. C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations, Physica D 56 (1992), 303–367.
  • A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling wave solutions of parabolic systems, Translations of Mathematical Monographs, vol. 140, American Mathematical Society, Providence, RI, 1994.
  • W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations, Vieweg, 1985.
  • P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, Vol. 79. New York - Heidelberg -Berlin: Springer-Verlag. IX, 1982.
  • C. E. Wayne, An introduction to KAM theory, Dynamical systems and probabilistic methods in partial differential equations. 1994 summer seminar on dynamical systems and probabilistic methods for nonlinear waves (Percy (ed.) et al. Deift, ed.), American Mathematical Society, 1996, pp. 3–29.
  • —, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rat. Mech. Anal. 138 (1997), 279–306.
  • F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel Journal of Mathematics 38 (1981), 29–40.
  • D. Werner, Funktionalanalysis, extended ed., Springer-Verlag, Berlin, 2000.
  • G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Reprint of the 1974 original, A Wiley-Interscience Publication.
  • M. Wiegner, The Navier-Stokes equations-a neverending challenge?, Jahresber. Deutsch. Math.-Verein. 101 (1999), no. 1, 1–25.
  • S. Wiggins, Global bifurcations and chaos. analytical methods, Applied Mathematical Sciences, 73. New York etc.: Springer-Verlag., 1988.
  • —, Introduction to applied nonlinear dynamical systems and chaos, second ed., Texts in Applied Mathematics, vol. 2, Springer-Verlag, New York, 2003.
  • J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987.
  • J. D. Wright, Corrections to the KdV approximation for water waves, SIAM J. Math. Anal. 37 (2006), no. 4, 1161–1206.
  • Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math. 130 (1997), no. 1, 39–72.
  • —, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), no. 2, 445–495.
  • —, Almost global wellposedness of the 2-D full water wave problem, Invent. Math. 177 (2009), no. 1, 45–135.
  • —, Global wellposedness of the 3-D full water wave problem, Invent. Math. 184 (2011), no. 1, 125–220.
  • C. E. Wayne and J. D. Wright, Higher-order modulation equations for a Boussinesq equation, SIAM J. Appl. Dyn. Syst. 1 (2002), no. 2, 271–302.
  • C. E. Wayne and M. I. Weinstein, Dynamics of partial differential equations, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 3, Springer, Cham, 2015.
  • J. Yang, Nonlinear waves in integrable and nonintegrable systems, SIAM, 2010.
  • S. Yanchuk, L. Lücken, M. Wolfrum, and A. Mielke, Spectrum and amplitude equations for scalar delay-differential equations with large delay, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 537–553.
  • K. Yosida, Functional analysis, Springer, New York, 1971.
  • H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite despth, Publ. Res. Inst. Math. Sci. 18 (1982), 49–96.
  • —, Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ. 23 (1983), 649–694.
  • V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys 4 (1968), 190–194.
  • E. Zeidler, Existenzbeweis für cnoidal waves unter Berücksichtigung der Oberflächenspannung. (Existence proof for cnoidal waves under consideration of the surface tension.), Arch. Ration. Mech. Anal. 41 (1971), 81–107 (German).
  • V. E. Zakharov and L. D. Fadeev, The Korteweg-de Vries equation is a fully integrable Hamiltonian system, Functional Anal. Appl. 5 (1971), 280–287.
  • D. Zimmermann, Justification of the Ginzburg-Landau approximation for quasilinear problems - including an application to Bénard-Marangoni convection, Preprint Universität Stuttgart (2016), 89 pages.
  • N. J. Zabusky and M. D. Kruskal, Interactions of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.