Convection-Diffusion Problems
An Introduction to Their Analysis and Numerical Solution

Martin Stynes
David Stynes
Convection-Diffusion Problems
An Introduction to Their Analysis and Numerical Solution
Convection-Diffusion Problems
An Introduction to Their Analysis and Numerical Solution

Martin Stynes
David Stynes
Contents

Preface vii

Chapter 1. Introduction and Preliminary Material 1
 §1.1. A simple example 1
 §1.2. A little motivation and history 7
 §1.3. Notation 7
 §1.4. Maximum principle and barrier functions 8
 §1.5. Asymptotic expansions 10

Chapter 2. Convection-Diffusion Problems in One Dimension 15
 §2.1. Asymptotic analysis—an extended example 15
 §2.2. Green’s functions 21
 §2.3. A priori bounds on the solution and its derivatives 24
 §2.4. Decompositions of the solution 38

Chapter 3. Finite Difference Methods in One Dimension 43
 §3.1. M-matrices, upwinding 45
 §3.2. Artificial diffusion 54
 §3.3. Uniformly convergent schemes 56
 §3.4. Shishkin meshes 59

Chapter 4. Convection-Diffusion Problems in Two Dimensions 69
 §4.1. General description 69
 §4.2. A priori estimates 77
 §4.3. General comments on numerical methods 84
Preface

Convection-diffusion problems attract much attention in the research literature. For numerical analysts working in this area, a standard reference is the text by Roos, Stynes, and Tobiska \cite{RST96,RST08}. This book contains a lot of useful information, but it is daunting for those beginners who have some familiarity with numerical methods and their analysis but who have not previously worked with convection-diffusion and other singularly perturbed differential equations. For many years I felt that an easier, more introductory book was needed to encourage new people to enter our fascinating research area. This belief was encouraged by the popularity of a survey article, “Steady-state convection-diffusion problems”, that I wrote for *Acta Numerica* in 2005 \cite{Sty05}. The present book is an extended and updated version of that 2005 article, and I have added exercises and other material to try to make it more attractive and more useful for the novice reader.

The feeling that a book of this type was desirable did not lead me to take any action until I was invited to present a course on this topic at the AARMS (Atlantic Association for Research in the Mathematical Sciences) Summer School at Dalhousie University in Halifax, Nova Scotia, Canada, during July 2015. The organisers encourage their lecturers to transform their lecture notes into books, and after much delay I have done this. I am very grateful to AARMS for their invitation to lecture and for the enjoyable month I spent in the delightful city of Halifax.

Here we list the prerequisites for the reader. In Chapters 1-3 some knowledge of two-point boundary value problems and their numerical solution by finite difference methods is enough for almost all of the material.
For Chapter 4 it is desirable to have some previous experience of partial differential equations. Chapter 5 uses only ideas from earlier chapters. Finite element methods (FEMs) appear for the first time in the long Chapter 6 and here I assume that the reader already has a general understanding of how FEMs are constructed and analysed. The Lebesgue spaces $L^p(\Omega)$ and the standard Sobolev spaces $H^k(\Omega)$ are used occasionally in the earlier chapters of the book and more heavily in Chapter 6 the reader should have some familiarity with these well-known concepts.

The book was written where I work, in the research paradise known as Beijing Computational Science Research Center. I owe a great debt to CSRC’s director Hai-Qing Lin for the positive environment he has created at CSRC through his friendly yet no-nonsense approach to productive research. My work was supported by the 1000 Talents (Foreign Experts) Program of the People’s Republic of China.

All comments on this book are welcome. No doubt it will (inevitably) contain some mistakes, so corrections are also welcome, though the fewer the better! My email address is m.stynes@csrc.ac.cn

Martin Stynes

Bibliography

Index

L-spline, 103
L*-spline, 100 103
a posteriori error estimator, 140
adaptive methods, 139 141
anisotropic interpolation estimate, 118
arc-length equidistribution, 140
artificial diffusion, 55 58
asymptotic expansion, 10 12 17 21 24
39 39 40 77 83
asymptotic sequence, 10
Bakhvalov mesh, 66
balanced norm, 100 122
barrier function, 10 20 23 27 29 31
33
barycentric coordinates, 112
boundary layer, 11 13 16 19 21 22 26
37
regular, 71
characteristic, 71 73 80 81 83 84
91 92
exponential, 71 74 76 79 81 83 85
92 110 115 120
parabolic, 71
thickness, 83
width, 83
bubble
function, 111 114
subspace, 112 116
Bubnov–Galerkin FEM, 95 100 111
central differencing, 56
central differencing, 43 45 55 57 58
65 84 87 91 108 120
characteristic interior layer, 76 77 110
characteristic layer, 83 110
coercivity, 80 106 114 122 115 120
127
commutative diagram, 12
comparison principle, 9 31
corner compatibility condition, 80 94
corner layer, 79 80 84
cut-off function, 109
decomposition of solution, 38 42 70
122
defect correction, 93 125
discontinuous Galerkin FEM (dGFEM),
120
discrete barrier function, 10 51 52
62 64
discrete comparison principle, 52
discrete maximum principle, 46
double mesh principle, 52
dual-weighted-residual method, 140

El Mistikawy–Werle scheme, 59 101
elliptic operator, 5
exponentially upwinded scheme, 103
Galerkin orthogonality, 103 107 120

155
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galerkin projection property</td>
<td>104</td>
</tr>
<tr>
<td>Green’s function</td>
<td>21, 23, 30, 101, 102</td>
</tr>
<tr>
<td>heat equation</td>
<td>73</td>
</tr>
<tr>
<td>Hemker problem</td>
<td>83, 126</td>
</tr>
<tr>
<td>higher-degree piecewise polynomials</td>
<td>98</td>
</tr>
<tr>
<td>hybrid difference scheme</td>
<td>66, 91, 125</td>
</tr>
<tr>
<td>Il’in–Allen–Southwell scheme</td>
<td>58, 59</td>
</tr>
<tr>
<td>imposing boundary condition weakly</td>
<td>117, 127, 128, 139</td>
</tr>
<tr>
<td>inf-sup condition</td>
<td>112</td>
</tr>
<tr>
<td>interior layer</td>
<td>37, 58, 88, 93</td>
</tr>
<tr>
<td>interpolation error estimate</td>
<td>122</td>
</tr>
<tr>
<td>interpolation property</td>
<td>105</td>
</tr>
<tr>
<td>inverse inequality</td>
<td>105, 114, 121</td>
</tr>
<tr>
<td>layer function</td>
<td>5</td>
</tr>
<tr>
<td>Lin identities</td>
<td>123</td>
</tr>
<tr>
<td>local projection stabilization</td>
<td>117, 133</td>
</tr>
<tr>
<td>M-matrix</td>
<td>45, 47, 58, 59, 64, 88, 91</td>
</tr>
<tr>
<td>majorizing function</td>
<td>29</td>
</tr>
<tr>
<td>maximum principle</td>
<td>8, 9, 23, 26, 69</td>
</tr>
<tr>
<td>mesh Péclet number</td>
<td>108</td>
</tr>
<tr>
<td>Neumann boundary condition</td>
<td>33, 35</td>
</tr>
<tr>
<td>Nitsche’s method</td>
<td>127, 139</td>
</tr>
<tr>
<td>nonsymmetric interior penalty dGFM</td>
<td>131</td>
</tr>
<tr>
<td>penalty parameter</td>
<td>128, 132</td>
</tr>
<tr>
<td>Petrov–Galerkin FEM</td>
<td>100, 102, 103</td>
</tr>
<tr>
<td>PLTMG</td>
<td>103</td>
</tr>
<tr>
<td>postprocessing solution</td>
<td>126, 139</td>
</tr>
<tr>
<td>quasi-uniform mesh</td>
<td>105</td>
</tr>
<tr>
<td>reaction-diffusion</td>
<td>21, 36, 37, 32, 59, 66</td>
</tr>
<tr>
<td>reduced problem</td>
<td>26, 70, 72</td>
</tr>
<tr>
<td>solution</td>
<td>26, 35, 36, 77</td>
</tr>
<tr>
<td>regular component</td>
<td>39</td>
</tr>
<tr>
<td>regular perturbation</td>
<td>12, 16, 17</td>
</tr>
<tr>
<td>residual-free bubble</td>
<td>140</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>7</td>
</tr>
<tr>
<td>Richardson extrapolation</td>
<td>91</td>
</tr>
<tr>
<td>Samarskiǐ difference scheme</td>
<td>55</td>
</tr>
<tr>
<td>Scharfetter–Gummel scheme</td>
<td>59</td>
</tr>
<tr>
<td>Schauder estimate</td>
<td>59</td>
</tr>
<tr>
<td>SDFEM parameter</td>
<td>104, 108, 110, 124</td>
</tr>
<tr>
<td>shape-regular mesh</td>
<td>105</td>
</tr>
<tr>
<td>Shishkin decomposition</td>
<td>40, 41, 61, 84</td>
</tr>
<tr>
<td>Shishkin mesh</td>
<td>40, 60, 68, 89, 92, 94</td>
</tr>
<tr>
<td>Shishkin’s obstacle theorem</td>
<td>91</td>
</tr>
<tr>
<td>shock-capturing</td>
<td>110</td>
</tr>
<tr>
<td>simple upwinding</td>
<td>125</td>
</tr>
<tr>
<td>singular perturbation</td>
<td>12, 16, 18, 21, 24</td>
</tr>
<tr>
<td>smooth component</td>
<td>13, 29</td>
</tr>
<tr>
<td>standard Galerkin FEM</td>
<td>95, 99, 109</td>
</tr>
<tr>
<td>streamline diffusion FEM (SDFEM),</td>
<td>98, 103, 110, 116, 122, 125, 139, 140</td>
</tr>
<tr>
<td>streamline diffusion norm</td>
<td>105, 113</td>
</tr>
<tr>
<td>stretched variable</td>
<td>13, 73, 74</td>
</tr>
<tr>
<td>subcharacteristic</td>
<td>71, 72, 76, 93, 105</td>
</tr>
<tr>
<td>supercloseness</td>
<td>139</td>
</tr>
<tr>
<td>SUPG</td>
<td>104, 105</td>
</tr>
<tr>
<td>tailored finite point method</td>
<td>59</td>
</tr>
<tr>
<td>trace inequality</td>
<td>128</td>
</tr>
<tr>
<td>turning point</td>
<td>37, 38</td>
</tr>
<tr>
<td>uniformly stable scheme</td>
<td>17</td>
</tr>
<tr>
<td>upwinding</td>
<td>47, 53, 55, 89</td>
</tr>
<tr>
<td>simple</td>
<td>47, 49, 53, 55, 57, 58, 61, 64</td>
</tr>
<tr>
<td>stretched variable</td>
<td>13, 73, 74</td>
</tr>
</tbody>
</table>
Selected Published Titles in This Series

196 Martin Stynes and David Stynes, Convection-Diffusion Problems, 2018
192 Tai-Peng Tsai, Lectures on Navier-Stokes Equations, 2018
191 Theo Bühler and Dietmar A. Salamon, Functional Analysis, 2018
190 Xiang-dong Hou, Lectures on Finite Fields, 2018
189 I. Martin Isaacs, Characters of Solvable Groups, 2018
188 Steven Dale Cutkosky, Introduction to Algebraic Geometry, 2018
187 John Douglas Moore, Introduction to Global Analysis, 2017
186 Bjorn Poonen, Rational Points on Varieties, 2017
185 Douglas J. LaFountain and William W. Menasco, Braid Foliations in Low-Dimensional Topology, 2017
184 Harm Derksen and Jerzy Weyman, An Introduction to Quiver Representations, 2017
183 Timothy J. Ford, Separable Algebras, 2017
182 Guido Schneider and Hannes Uecker, Nonlinear PDEs, 2017
179 Henri Cohen and Fredrik Strömberg, Modular Forms, 2017
178 Jeanne N. Clelland, From Frenet to Cartan: The Method of Moving Frames, 2017
177 Jacques Sauloy, Differential Galois Theory through Riemann-Hilbert Correspondence, 2016
176 Adam Clay and Dale Rolfsen, Ordered Groups and Topology, 2016
174 Alexander Kirillov Jr., Quiver Representations and Quiver Varieties, 2016
173 Lan Wen, Differentiable Dynamical Systems, 2016
171 Qing Han, Nonlinear Elliptic Equations of the Second Order, 2016
170 Donald Yau, Colored Operads, 2016
169 András Vasy, Partial Differential Equations, 2015
168 Michael Aizenman and Simone Warzel, Random Operators, 2015
167 John C. Neu, Singular Perturbation in the Physical Sciences, 2015
166 Alberto Torchinsky, Problems in Real and Functional Analysis, 2015
164 Terence Tao, Expansion in Finite Simple Groups of Lie Type, 2015
162 Firas Rassoul-Agha and Timo Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, 2015
161 Diane Maclagan and Bernd Sturmfels, Introduction to Tropical Geometry, 2015
160 Marius Overholt, A Course in Analytic Number Theory, 2014
158 Fritz Colonius and Wolfgang Kliemann, Dynamical Systems and Linear Algebra, 2014
156 Markus Haase, Functional Analysis, 2014

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/gsmseries/.
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems.

At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions.

This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-196

American Mathematical Society
www.ams.org

Atlantic Association for Research in the Mathematical Sciences
www.aarms.math.ca