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Introduction
to the Series

It is fairly well accepted that to learn pure mathematics, a student has to
take analysis, algebra, geometry, and topology. Until now there has not
been an equally well-accepted curriculum for applied mathematics. There
are many reasons one can think of. For one thing, applied mathematics is
truly very diverse. Traditional subjects such as numerical analysis, statistics,
operational research, etc., can all be regarded as part of applied mathemat-
ics. Beyond that, a huge amount of applied mathematics is practiced in
other scientific and engineering disciplines. For example, a large part of
fluid dynamics research has become computational. The same can be said
about theoretical chemistry, biology, material science, etc. The algorithmic
issues that arise in these disciplines are at the core of applied mathematics.
Machine learning, a subject that deals with mathematical models and al-
gorithms for complex data, is, at its heart, a very mathematical discipline,
although at the moment it is much more commonly practiced in computer
science departments.

In 2002, David Cai, Shi Jin, Eric Vanden-Eijnden, Pingwen Zhang, and
I started the applied mathematics summer school in Beijing, with the ob-
jective of creating a systematic and unified curriculum for students in ap-
plied mathematics. Since then, this summer school has been repeated every
year at Peking University. The main theme of the summer school has also
evolved. But in the early years, the main topics were applied stochastic
analysis, differential equations, numerical algorithms, and a mathematical
introduction to physics. In recent years, a mathematical introduction to

xiii



xiv Introduction to the Series

machine learning has also been added to the list. In addition to the summer
school, these courses have also been taught from time to time during regular
terms at New York University, Peking University, and Princeton University.
The lecture notes from these courses are the main origin of this textbook
series. The early participants, including some of the younger people who
were students or teaching assistants early on, have also become contributors
to this book series.

After many years, this series of courses has finally taken shape. Obvi-
ously, this has not come easy and is the joint effort of many people. I would
like to express my sincere gratitude to Tiejun Li, Pingbing Ming, Shi Jin,
Eric Vanden-Eijnden, Pingwen Zhang, and other collaborators involved for
their commitment and dedication to this effort. I am also very grateful to
Mrs. Yanyun Liu, Baomei Li, Tian Tian, Yuan Tian for their tireless efforts
to help run the summer school. Above all, I would like to pay tribute to
someone who dedicated his life to this cause, David Cai. David had a pas-
sion for applied mathematics and its applications to science. He believed
strongly that one has to find ways to inspire talented young people to go into
applied mathematics and to teach them applied mathematics in the right
way. For many years, he taught a course on introducing physics to applied
mathematicians in the summer school. To create a platform for practicing
the philosophy embodied in this project, he cofounded the Institute of Nat-
ural Sciences at Shanghai Jiaotong University, which has become one of the
most active centers for applied mathematics in China. His passing away last
year was an immense loss, not just for all of us involved in this project, but
also for the applied mathematics community as a whole.

This book is the first in this series, covering probability theory and sto-
chastic processes in a style that we believe is most suited for applied math-
ematicians. Other subjects covered in this series will include numerical
algorithms, the calculus of variations and differential equations, a mathe-
matical introduction to machine learning, and a mathematical introduction
to physics and physical modeling. The stochastic analysis and differential
equations courses summarize the most relevant aspects of pure mathemat-
ics, the algorithms course presents the most important technical tool of ap-
plied mathematics, and the learning and physical modeling courses provide
a bridge to the real world and to other scientific disciplines. The selection
of topics represents a possibly biased view about the true fundamentals of
applied mathematics. In particular, we emphasize three themes through-
out this textbook series: learning, modeling, and algorithms. Learning is
about data and intelligent decision making. Modeling is concerned with
physics-based models. The study of algorithms provides the practical tool
for building and interrogating the models, whether machine learning–based
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or physics-based. We believe that these three themes should be the major
pillars of applied mathematics, the applied math analog of algebra, analysis,
and geometry.

While physical modeling and numerical algorithms have been the domi-
nating driving force in applied mathematics for years, machine learning is a
relatively new comer. However, there are very good reasons to believe that
machine learning will not only change AI but also the way we do physical
modeling. With this last missing component in place, applied mathematics
will become the natural platform for integrating machine learning and physi-
cal modeling. This represents a new style for doing scientific research, a style
in which the data-driven Keplerian paradigm and the first principle-driven
Newtonian paradigm are integrated to give rise to unprecedented technical
power. It is our hope that this series of textbooks will be of some help for
making that a reality!

Weinan E, Princeton, 2018





Preface

This book is written for students and researchers in applied mathematics
with an interest in science and engineering. Our main purpose is to provide
a mathematically solid introduction to the basic ideas and tools in prob-
ability theory and stochastic analysis. Starting from the basics of random
variables and probability theory, we go on to discuss limit theorems, Markov
chains, diffusion processes, and random fields. Since the kind of readers we
have in mind typically have some background in differential equations, we
put more weight on the differential equation approach. In comparison, we
have neglected entirely martingale theory even though it is a very important
part of stochastic analysis. The diffusion process occupies a central role in
this book. We have presented three different ways of looking at the dif-
fusion process: the approach of using stochastic differential equations, the
Fokker-Planck equation approach, and the path integral approach. The first
allows us to introduce stochastic calculus. The second approach provides a
link between differential equations and stochastic analysis. The path in-
tegral approach is very much preferred by physicists and is also suited for
performing asymptotic analysis. In addition, it can be extended to random
fields.

In choosing the style of the presentation, we have tried to strike a balance
between rigor and the heuristic approach. We have tried to give the reader an
idea about the kind of mathematical construction or mathematical argument
that goes into the subject matter, but at the same time, we often stop short
of proving all the theorems we state or we prove the theorems under stronger
assumptions. Whenever possible, we have tried to give the intuitive picture
behind the mathematical constructions.

xvii
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Another emphasis is on numerical algorithms, including Monte Carlo
methods, numerical schemes for solving stochastic differential equations, and
the stochastic simulation algorithm. The book ends with a discussion on
two application areas, statistical mechanics and chemical kinetics, and a
discussion on rare events, which is perhaps the most important manifestation
of the effect of noise.

The material contained in this book has been taught in various forms
at Peking University, Princeton University, and New York University since
2001. It is now a required course for the special applied mathematics pro-
gram at Peking University.

Weinan E
Tiejun Li
Eric Vanden-Eijnden

December 2018



Notation

(1) Geometry notation:
(a) N: Natural numbers, N = {0, 1, . . .}.
(b) Z: Integers.
(c) Q: Rational numbers.
(d) R: Real numbers.
(e) R̄: Extended real numbers, R̄ = [−∞,∞].
(f) R+: Nonnegative real numbers.
(g) R̄+: Extended nonnegative real numbers, R̄+ = [0,∞].
(h) Sn−1: (n− 1)-dimensional unit sphere in Rn.
(i) RT: Collection of all real functions on time domain T.

(2) Probability notation:
(a) P: Probability measure.
(b) E: Mathematical expectation.
(c) Pi, Px, or Pμ: Probability distribution conditioned on X0 = i,

X0 = x, or X0 ∼ μ.
(d) Ei, Ex, Eμ: Mathematical expectation with respect to Pi, Px,

or Pμ.
(e) Ex,t: Mathematical expectation conditioned on Xt = x.
(f) Ω: Sample space.
(g) F : σ-algebra in probability space.
(h) R,Rd: The Borel σ-algebra on R or Rd.
(i) σ(B): The smallest σ-algebra generated by sets in B.
(j) RT: The product Borel σ-algebra on RT.
(k) U(A): Uniform distribution on set A.

xix



xx Notation

(l) P(λ): Poisson distribution with mean λ.
(m) E(λ): Exponential distribution with mean λ−1.
(n) [X,X]t: Quadratic variation process of X.
(o) X ∼ P(λ): Distribution of X. The right-hand side can be

distributions like P(λ) or N(μ, σ2), etc.

(3) Function spaces:
(a) C∞

c (Rd) or Ck
c (R

d): Smooth or Ck-functions with compact
support in Rd.

(b) C0(R
d): Continuous functions in Rd that vanish at infinity.

(c) Cb(R
d): Bounded continuous functions in Rd.

(d) Lp
t or Lp([0, T ]): Lp-functions as a function of t.

(e) Lp
ω or Lp(Ω): Lp-functions as a function of ω.

(f) B,H : Banach or Hilbert spaces.
(g) B∗: Dual space of B.

(4) Operators: I,P,Q,K, etc.

(5) Functions:
(a) �·�: The ceil function. �x� = m+1 if x ∈ [m,m+1) for m ∈ Z.
(b) �·	: The floor function. �x	 = m if x ∈ [m,m+ 1) for m ∈ Z.

(c) |x|: �2-modulus of a vector x ∈ Rd: |x| = (
∑d

i=1 x
2
i )

1
2 .

(d) ‖f‖: Norm of function f in some function space.
(e) a ∨ b: Maximum of a and b: a ∨ b = max(a, b).
(f) a ∧ b: Minimum of a and b: a ∧ b = min(a, b).
(g) 〈f〉: The average of f with respect to a measure μ: 〈f〉 =∫

f(x)μ(dx).

(h) (x,y): Inner product for x,y ∈ Rd: (x,y) = xTy.
(i) (f, g): Inner product for L2-functions f, g: (f, g)=

∫
f(x)g(x)dx.

(j) 〈f, g〉: Dual product for f ∈ B∗ and g ∈ B.
(k) A : B: Twice contraction for second-order tensors, i.e., A :

B =
∑

ij aijbji.

(l) |S|: The cardinality of set S.
(m) |Δ|: The subdivision size when Δ is a subdivision of a domain.
(n) χA(x): Indicator function, i.e., χA(x) = 1 if x ∈ A and 0

otherwise.
(o) δ(x− a): Dirac’s delta-function at x = a.
(p) Range(P), Null(P): The range and null space of operator P,

i.e., Range(P) = {y|y = Px}, Null(P) = {x|Px = 0}.
(q) ⊥C : Perpendicular subspace, i.e., ⊥C = {x|x ∈ B∗, 〈x, y〉 =

0, ∀y ∈ C } where C ⊂ B.



Notation xxi

(6) Symbols:
(a) cε � dε: Logrithmic equivalence, i.e., limε→0 log cε/ log dε = 1.
(b) cε ∼ dε or cn ∼ dn: Equivalence, i.e., limε→0 cε/dε = 1 or

limn→∞ cn/dn = 1.
(c) Dx: Formal infinitesimal element in path space, Dx =∏

0≤t≤T dxt.





Appendix

A. Laplace Asymptotics and Varadhan’s Lemma

Consider the Laplace integral

F (t) =

∫
R

eth(x)dx, t � 1,

where h(x) ∈ C2(R), h(0) is the only global maximum, and h′′(0) �= 0. We
further assume that for any c > 0, there exists b > 0 such that

h(x)− h(0) ≤ −b if |x| ≥ c.

Assume also that h(x) → −∞ fast enough as x → ∞ to ensure the conver-
gence of F for t = 1.

Lemma A.1 (Laplace method). We have the asymptotics

(A.1) F (t) ∼
√
2π(−th′′(0))−

1
2 exp(th(0)) as t → ∞,

where the equivalence f(t) ∼ g(t) means that limt→∞ f(t)/g(t) = 1.

The above asymptotic results can be stated as

lim
t→∞

1

t
logF (t) = sup

x∈R
h(x).

This formulation is what we will use in the large deviation theory. Its
abstract form in the infinite-dimensional setting is embodied in the so-called
Varadhan’s lemma to be discussed later [DZ98,DS84,Var84].

Proof. Without loss of generality, we can assume h(0) = 0 by shifting h(x)
correspondingly. With this condition, if h(x) = h′′(0)x2/2, h′′(0) < 0, we

279
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have ∫
R

eth(x)dx =
√
2π(−th′′(0))−

1
2 .

In general, for any ε > 0, there exists δ > 0 such that if |x| ≤ δ,∣∣∣h(x)− h′′(0)

2
x2
∣∣∣ ≤ εx2.

It follows that∫
[−δ,δ]

exp
(tx2

2
(h′′(0)− 2ε)

)
dx ≤

∫
[−δ,δ]

exp
(
th(x)

)
dx

≤
∫
[−δ,δ]

exp
( tx2

2
(h′′(0) + 2ε)

)
dx.

By assumption, for this δ > 0, there exists η > 0 such that h(x) ≤ −η if
|x| ≥ δ. Thus∫

|x|≥δ
exp
(
th(x)

)
dx ≤ e−(t−1)η

∫
R

eh(x)dx ∼ O(e−αt), α > 0, for t > 1.

We first prove the upper bound:∫
R

exp
(
th(x)

)
dx ≤

∫
R

exp
( tx2

2
(h′′(0) + 2ε)

)
dx

−
∫
|x|≥δ

exp
( tx2

2
(h′′(0) + 2ε)

)
dx+O(e−αt)

=
√
2π
[
t(−h′′(0)− 2ε)

]− 1
2
+O(e−βt)

where β > 0. In fact, we ask for ε < −h′′(0)/2 here.

The proof of the lower bound is similar. By the arbitrary smallness of
ε, we have

lim
t→∞

F (t)/
√
2π(−th′′(0))−

1
2 = 1,

which completes the proof. �

Definition A.2 (Large deviation principle). Let X be a complete separable
metric space and let {Pε}ε≥0 be a family of probability measures on the Borel
subsets of X . We say that Pε satisfies the large deviation principle if there
exists a rate functional I : X → [0,∞] such that:

(i) For any � < ∞,

{x : I(x) ≤ �} is compact.

(ii) Upper bound. For each closed set F ⊂ X ,

lim
ε→0

ε lnPε(F ) ≤ − inf
x∈F

I(x).
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(iii) Lower bound. For each open set G ⊂ X ,

lim
ε→0

ε lnPε(G) ≥ − inf
x∈G

I(x).

Theorem A.3 (Varadhan’s lemma). Suppose that Pε satisfies the large de-
viation principle with rate functional I(·) and F ∈ Cb(X ). Then

(A.2) lim
ε→0

ε ln

∫
X

exp

(
1

ε
F (x)

)
Pε(dx) = sup

x∈X
(F (x)− I(x)).

The proof of Varadhan’s lemma can be found in [DZ98,Var84].

B. Gronwall’s Inequality

Theorem B.1 (Gronwall’s inequality). Assume that the function f : [0,∞)
→ R+ satisfies the inequality

f(t) ≤ a(t) +

∫ t

0
b(s)f(s)ds,

where a(t), b(t) ≥ 0. Then we have

(B.1) f(t) ≤ a(t) +

∫ t

0
a(s)b(s) exp

(∫ t

s
b(u)du

)
ds.

Proof. Let g(t) =
∫ t
0 b(s)f(s)ds. We have

g′(t) ≤ a(t)b(t) + b(t)g(t).

Define h(t) = g(t) exp(−
∫ t
0 b(s)ds). We obtain

h′(t) ≤ a(t)b(t) exp

(
−
∫ t

0
b(s)ds

)
.

Integrating both sides from 0 to t, we get

g(t) ≤
∫ t

0
a(s)b(s) exp

(∫ t

s
b(u)du

)
ds,

which yields the desired estimate. �

In the case when a(t) ≡ a and b(t) ≡ b, we have

f(t) ≤ a exp(bt).

Theorem B.2 (Discrete Gronwall’s inequality). Assume that Fn satisfies

(B.2) Fn+1 ≤ (1 + bnδt)Fn + an, F0 ≥ 0,

where δt, an, bn ≥ 0. Then we have

(B.3) Fn ≤ exp

((
n−1∑
k=0

bk

)
δt

)
F0 +

n−1∑
k=0

(
ak exp

((
n−1∑

l=k+1

bl

)
δt

))
.
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Proof. From (B.2), we have

Fn ≤
n−1∏
k=0

(1 + bkδt)F0 +
n−1∑
k=0

(
ak

n−1∑
l=k+1

(1 + blδt)

)
.

The estimate (B.2) follows by a straightforward application of the inequality
1 + x ≤ ex. �

When F0 ≤ Cδtp, bn ≡ b, an = Kδtp+1, and nδt ≤ T , we have

Fn ≤ CebT δtp +KebT
δtp+1

1− e−bδt
.

This is the commonly used pth-order error estimate in numerical analysis.

C. Measure and Integration

Let (Ω,F) be a measurable space.

Definition C.1 (Measure). The measure μ : F → R̄+ = [0,∞] is a set
function defined on F that satisfies

(a) μ(∅) = 0;

(b) the countable additivity; i.e., for pairwise disjoint sets An ∈ F ,
we have

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An),

where we assume the arithmetic rules (2.7) on the extended reals R̄+.

When the set function μ takes values in R̄ = [−∞,∞] and only the
countable additivity condition is assumed, μ is called a signed measure.

Definition C.2 (Algebra). An algebra (or field) F0 is a collection of subsets
of Ω that satisfies the following conditions:

(i) Ω ∈ F0;

(ii) if A ∈ F0, then Ac ∈ F0;

(iii) if A,B ∈ F0, then A ∪B ∈ F0.

Theorem C.3 (Measure extension). A finite measure μ on an algebra F0 ⊂
F , i.e., μ(Ω) < ∞, can be uniquely extended to a measure on σ(F0).

Definition C.4 (Measurable function). A function f : Ω → R is called
measurable or F-measurable if f−1(A) ∈ F for any A ∈ R.
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Definition C.5 (Simple function). A function f : Ω → R is called a simple
function if it has the representation

f(ω) =
n∑

i=1

aiχAi(ω),

where ai ∈ R and Ai ∈ F for i = 1, . . . , n.

Theorem C.6. Any nonnegative measurable function f on space (Ω,F)
can be approximated by a sequence of monotonically increasing nonnegative
functions {fn}; that is, 0 ≤ fn(ω) ≤ fn+1(ω) for any n and

lim
n→∞

fn(ω) = f(ω).

We will denote such a monotone approximation as fn ↑ f for short.

Definition C.7 (Integration of a simple function). The integral of the sim-
ple function f(ω) =

∑n
i=1 aiχAi(ω) is defined as

μ(f) =

∫
Ω
fμ(dω) =

n∑
i=1

aiμ(Ai).

Theorem C.8 (Properties of the integral of simple functions). Suppose that
fn, gn, f , and g are nonnegative simple functions. Then we have:

(a) μ(αf + βg) = αμ(f) + βμ(g) for any α, β ∈ R+.

(b) If f ≤ g, then μ(f) ≤ μ(g).

(c) If fn ↑ f , then limn→∞ μ(fn) = μ(f).

(d) If fn and gn are monotonically increasing and limn→∞ fn ≤
limn→∞ gn, then limn→∞ μ(fn) ≤ limn→∞ μ(gn).

Definition C.9. Let f be a nonnegative measurable function. The integral
of f is defined as

μ(f) =

∫
Ω
f(ω)μ(dω) = lim

n→∞
μ(fn),

where fn ↑ f are nonnegative functions.

It is easy to see that the integral is well-defined, say using Theorem
C.8(d).

Definition C.10. Let f be a measurable function. The integral of f is
defined as

μ(f) =

∫
Ω
f(ω)μ(dω) = μ(f+)− μ(f−),

where f+ = f ∨ 0 and f− = (−f) ∨ 0 are both nonnegative measurable
functions. If both μ(f+) and μ(f−) are finite, f is called an integrable
function.



284 Appendix

Theorem C.11 (Monotone convergence theorem). Suppose that {fn} are
nonnegative integrable functions and fn ↑ f almost everywhere. Then

lim
n→∞

μ(fn) = μ(f).

Theorem C.12 (Fatou lemma). Let {fn} be nonnegative integrable func-
tions. We have

μ(lim inf
n→∞

fn) ≤ lim inf
n→∞

μ(fn).

Theorem C.13 (Dominated convergence theorem). Suppose that {fn} are
integrable functions and fn → f almost everywhere. If |fn| ≤ g for any n
and μ(g) < ∞, then

lim
n→∞

μ(fn) = μ(f).

Definition C.14 (σ-finite measure). A measure μ on (Ω,F) is σ-finite if
there exists a countable partition of Ω; i.e., Ω =

⋃∞
n=1An where {An} are

pairwise disjoint, such that μ(An) < ∞ for any n.

Definition C.15 (Absolute continuity). Let μ, η be a σ-finite measure and
a signed measure, respectively. Here η is called absolutely continuous with
respect to μ if μ(A) = 0 implies η(A) = 0 for any A ∈ F . It is also denoted
as η � μ for short.

Theorem C.16 (Radon-Nikodym theorem). Let μ be a σ-finite measure
on (Ω,F) and let η be a signed measure which is absolutely continuous with
respect to μ. Then there exists a measurable function f such that

η(A) =

∫
A
f(ω)μ(dω)

for any A ∈ F . Here f is unique in the μ-equivalent sense; i.e., f
μ∼ g if

μ(f = g) = 1. It is also called the Radon-Nikodym derivative of η with
respect to μ, abbreviated as f = dη/dμ.

The readers may refer to [Bil79,Cin11,Hal50] for more details.

D. Martingales

Consider the probability space (Ω,F ,P) and a filtration {Fn}n∈N or {Ft}t≥0.

Definition D.1 (Martingale). A continuous time stochastic process Xt is
called an Ft-martingale if Xt ∈ L1

ω for any t, Xt is Ft-adapted, and

(D.1) E(Xt|Fs) = Xs for all s ≤ t.

Xt is called a submartingale or supermartigale if the above equality is re-
placed by ≥ or ≤. These concepts can be defined for discrete time stochastic
processes if we replace (D.1) by E(Xn|Fm) = Xm for any m ≤ n. The dis-
crete submartingale or supermartingale can be defined similarly.
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The following theorem is a straightforward application of the conditional
Jensen inequality

Theorem D.2. Assume φ is a convex function such that φ(Xt) ∈ L1
ω for

any t. Then φ(Xt) is a submartingale.

The simplest choices of φ include φ(x) = |x|, x+ := x ∨ 0, or x2 if Xt is
a square-integrable martingale.

Theorem D.3 (Martingale inequalities). Let Xt be a submartingale with
continuous paths. Then for any [s, t] ⊂ [0,∞) and λ > 0, we have:

(i) Doob’s inequality:

P

(
sup

u∈[s,t]
Xu ≥ λ

)
≤ EX+

t

λ
.

(ii) Doob’s Lp-maximal inequality:

E

(
sup

u∈[s,t]
Xu

)p

≤
(

p

p− 1

)p

EXp
t , p > 1.

Useful results follow immediately if we take Xt = |Yt| where Yt is a
martingale. Similar inequalities also hold for discrete time martingales. See
[Chu01,Dur10,KS91] for more details.

E. Strong Markov Property

Consider a finite Markov chain {Xn}n∈N on S with initial distribution μ and
transition probability matrix P .

Theorem E.1 (Markov property). Conditional on Xm = i (m ∈ N),
{Xm+n}n∈N is Markovian with initial distribution δi and transition prob-
ability matrix P , and it is independent of (X0, X1, . . . , Xm).

Theorem E.2 (Strong Markov property). Let N be a stopping time. Con-
ditional on {N < ∞} and XN = i, {XN+n}n∈N is Markovian with initial
distribution δi and transition probability matrix P .

The above results also hold for the Q-process {Xt}t≥0 with generator Q.

Theorem E.3 (Markov property). Conditional on Xt = i (t ≥ 0), {Xt+s}s≥0

is Markovian with initial distribution δi and generator Q, and it is indepen-
dent of {Xr, r ≤ t}.
Theorem E.4 (Strong Markov property). Let T be a stopping time. Con-
ditional on {T < ∞} and XT = i, {XT+t}t≥0 is Markovian with initial
distribution δi and generator Q.

See [Dur10,Nor97] for more details.
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F. Semigroup of Operators

Let B be a Banach space equipped with the norm ‖ · ‖.

Definition F.1 (Operator semigroup). A family of bounded linear opera-
tors {S(t)}t≥0 : B → B forms a strongly continuous semigroup if for any
f ∈ B:

(i) S(0)f = f ; i.e., S(0) = I.

(ii) S(t)S(s)f = S(s)S(t)f = S(t+ s)f for any s, t ≥ 0.

(iii) ‖S(t)f − f‖ → 0 for any f ∈ B as t → 0+.

We will call {S(·)} a contraction semigroup if ‖S(t)‖ ≤ 1 for any t, where
‖S(t)‖ is the operator norm induced by the metric ‖ · ‖.

The simplest examples of semigroups include the solution operator for
the system

du(t)

dt
= Au(t),

where u ∈ Rn,A ∈ Rn×n, B = Rn, and S(t)f := u(t) by solving the ODE
with initial condition u(t)|t=0 = f . Similarly, consider the PDE

∂tu = Δu in U, u = 0 on ∂U,

where U is a bounded open set with smooth boundary. We can take B =
L2(U) and S(t)f := u(t), where u(t) is the solution of the above PDE with
initial condition u(x, t = 0) = f .

Definition F.2 (Infinitesimal generator). Denote

D(A) =

{
f ∈ B : lim

t→0+

S(t)f − f

t
exits in B

}
and

Af := lim
t→0+

1

t
(S(t)f − f), f ∈ D(A).

The operator A is called the infinitesimal generator of the semigroup S(t);
D(A) is the domain of the operator A.

It can be shown that the infinitesimal generators of the two examples
above are A = A and A = Δ and their domains are Rn and the Sobolev
space H1

0 (U) ∪H2(U), respectively.

Theorem F.3 (Basic properties). Let f ∈ D(A). We have:

(i) S(t)f ∈ D(A) and S(t)Af = AS(t)f for any t ≥ 0.

(ii) f(t) := S(t)f is differentiable on (0,∞) and

df(t)

dt
= Af(t), t > 0.
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Theorem F.4. The generator A is a closed operator and D(A) is dense in
B.

In general, the generator A is unbounded, e.g., A = Δ in the previous
PDE example, so we only have D(A) � B.

Definition F.5 (Resolvent set and operator). Let A be a closed linear
operator with domain D(A). The resolvent set of A is defined by

ρ(A) = {λ : λ ∈ R and λI −A is bijective from D(A) to B}.
If λ ∈ ρ(A), the resolvent operator Rλ : B → B is defined by

Rλf := (λI −A)−1f.

The closed graph theorem ensures that (λI −A)−1 is a bounded linear
operator if λ ∈ ρ(A).

Theorem F.6 (Hille-Yosida theorem). Let A be a closed, densely defined
linear operator on B. Then A generates a contraction semigroup {S(t)}t≥0

if and only if

λ ∈ ρ(A) and ‖Rλ‖ ≤ 1

λ
for all λ > 0.

Interested readers are referred to [Eva10,Paz83,Yos95] for more de-
tails on semigroup theory.
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Q-process, 54, 108
waiting time, 56

σ-algebra, 5
Borel, 8
generated by a random variable, 15
infinite product, 103

accessible state, 50
action functional, 200
algebra, 282
Arrhenius’s law, 250

backward stochastic integral, 166, 194
Bayes’s theorem, 7
Bayesian inference, 90
BKL algorithm, see also kinetic Monte

Carlo
Bochner’s theorem, 19
Boltzmann constant, 12
Borel-Cantelli lemma, 21, 30
Brownian bridge, 113, 136
Brownian dynamics, 171, 234
Brownian motion on sphere, 172
Brownian sheet, 136

central limit theorem, 31
Chapman-Kolmogorov equation, 47, 55
characteristic function, 17
chemical master equation, 264
chemical potential, 172, 223
chemical reaction kinetics

diffusion approximation, 268
multiscale, 272

closed system, 218

colored noise, 139

compound Poisson process, 72

conditional expectation, 14, 239

conditional probability, 6

convergence

almost sure, 16

in Lp, 16

in distribution, 16

in probability, 16

relations, 17

coordinate process, 103

covariance, 9

covariance function, 235

Cramér’s theorem, 33, 37

cross-correlation function, 237

cylinder set, 102

density of states, 221

detailed balance, 87, 176

diffusion coefficient, 118

diffusion process, 154

Dirichlet form, 61

distribution, 8

Bernoulli, 7, 24

binomial, 8, 24

Cauchy-Lorentz, 31

exponential, 11

Fréchet, 41

gamma, 72

Gaussian, 11

Gibbs, 12, 77, 89, 95, 176, 216, 221,
229, 236

Gumbel, 41
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normal, 11
Poisson, 8, 24
uniform, 10
Weibull, 41

distribution function, 12
Dynkin’s formula, 182
Dyson’s formula, 239

Ehrenfest’s diffusion model, 46
Einstein relation, 234, 238
emission matrix, 61
ensemble

canonical, 218, 222, 226
grand canonical, 218, 222
isothermal-isobaric, 224
microcanonical, 218, 225

entropy
Boltzmann, 38, 219
Gibbs, 219, 222
ideal gas, 227
mixing, 225
relative, 37
Shannon, 26, 43

ergodic theorem, 52
Q-process, 59
finite Markov chain, 51

Euler-Maruyama scheme, 157
strong convergence, 161
weak convergence, 190

exit problem, 182, 249
expectation, 9
extremal statistics, 40

Feynman-Kac formula, 180, 207
filtration, 104

augmented filtration, 105, 141
first passage time, 72
Fisher-Tippett-Gnedenko theorem, 41
fluctuation-dissipation relation, 234
Fokker-Planck equation, 170

boundary conditions, 175
fractional Brownian motion, 114, 136
free energy, 39

Gibbs, 224
Helmholtz, 221
Landau, 223

Gärtner-Ellis theorem, 231
Gaussian process, 109, 242

characteristic function, 110
covariance function, 109
mean function, 109

Gaussian random field, 212
generalized Langevin equation, 234, 242
generating function, 19

moment, 20
generator, see also infinitesimal

generator
geometric Brownian motion, 153
Gibbs distribution, see also

distribution, Gibbs
Gillespie’s algorithm, see also stochastic

simulation algorithm
Girko’s circular law, 27
Girsanov theorem, 206, 207
grand potential, see also free energy,

Landau
Green-Kubo relation, 238

Hamilton-Jacobi equation, 255
Hammersley-Clifford theorem, 215
heat capacity, 222
hidden Markov model, 61

backward algorithm, 65
Baum-Welch algorithm, 66
forward algorithm, 63
Viterbi algorithm, 64

Hille-Yosida theorem, 287
HMM, see also hidden Markov model
holding time, 57

i.o. set, 21
ideal gas, 226

discrete, 227
independence, 12, 13
inequality

Boole, 6
Burkholder-Davis-Gundy, 148
Chebyshev, 10
conditional Jensen, 15
discrete Gronwall, 281
Doob’s maximal, 151
Fenchel, 33
Gronwall, 281
Hölder, 9
Jensen, 10
martingale, 285
Minkowski, 9
Schwartz, 10

infinitesimal generator, 55, 108, 170, 286
information theory, 43
internal energy, 39
invariance principle, 120
invariant distribution, 48, 56, 176, 271
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invariant measure, 48
Ising model, 88, 228, 243
isolated system, 218
Itô integral, 140
Itô isometry, 141, 143
Itô process, 145
Itô-Taylor expansion, 156
Itô’s formula, 145, 147

discrete, 160

jump chain, 57
jump matrix, 57
jump time, 57

Kac-Zwanzig model, 240
Karhunen-Loève expansion, 112
kinetic Monte Carlo, 91
Kolmogorov equation

backward, 55, 175, 179, 268
forward, 55, 171, 264

Kolmogorov’s continuity theorem, 129
Kolmogorov’s extension theorem, 104
Kullback-Leibler distance, see also

entropy, relative

Langevin dynamics, see also Langevin
equation

Langevin equation, 153, 233
Laplace lemma, 34, 279

single-sided, 42
Laplacian matrix, 61
large deviation theory, 32, 33, 250, 280
large volume limit, 266
law of large numbers, 241

strong, 30
weak, 4, 29

law of mass action, 263
Legendre-Fenchel transform, 33, 224,

230, 249
Lévy’s continuity theorem, 19
likelihood function, 62, 90
limit theorem, 29
linear response theory, 236

admittance, 238

Markov chain
coarse-graining, 69
communicate, 50
continuous time, 53, 54
discrete time, 46
embedded, 57
irreducible, 49, 58
lumpable, 69

primitive, 51
reducible, 49
reversible, 60
stationary, 47
time reversal, 59

Markov process, 106
homogeneous in time, 107
transition density, 107
transition function, 106
transition kernel, 107, 126, 179

Markov random field, 214
martingale, 148, 151, 284
maximum entropy principle, 242
maximum likelihood estimate, 65, 90
MCMC, see also Metropolis algorithm
mean, 7, 9
mean first passage time, 183, 249
measurable

F-measurable, 8, 14
measurable space, 5, 282
Mercer’s theorem, 111
metastability, 246
Metropolis algorithm, 87

Gibbs sampling, 89
Glauber dynamics, 88
Metropolis-Hastings, 90

Milstein scheme, 158
minimum action path, 252, 256
minimum energy path, see also

minimum action path
moment, 9, 20

exponential, 32
Monte Carlo integration, 76
Monte Carlo method, 32
Mori-Zwanzig formalism, 238
multilevel Monte Carlo method, 162

network, 67
chemical reaction, 263
community structure, 69

numerical SDEs
strong convergence, 159
weak convergence, 159, 190

open system, 218
order statistics, 26, 72
Ornstein-Uhlenbeck process, 113, 114,

152, 177, 193
OU process, see also

Ornstein-Uhlenbeck process
over-damped dynamics, 242



304 Index

partition function, 12, 221
grand, 223

path integral, 203, 252
Perron-Frobenius theorem, 50, 230
phase transition, 231
Poisson process, 53, 109

waiting time, 54
posterior probability, 7
pressure, 225
prior probability, 7
probability current density, 172
probability density function, 9
probability distribution

continuous, 8
discrete, 7

probability measure, 5
absolutely continuous, 9

probability space, 5

quadratic variation, 127
quasipotential, 254, 256

global, 259
local, 259

Radon-Nikodym derivative, 9
random field, 209
random number generation, 77

acceptance-rejection, 82
Box-Muller, 81
composition, 81
inverse transformation, 79
linear congruential generator, 78
squeezing acceptance-rejection, 97

random telegraph process, 185
random variable, 8
random vector, 9
random walk, 46, 118

arcsine law, 120
rare events, 245
rate function, 33, 39
reaction rate equation, 262
reflection principle, 131
resistor network, 72
response function, 237
Runge-Kutta scheme, 158

semigroup, 108, 178, 286
Feller, 179
spectral theory, 183

simple function, 141
simulated annealing, 94

convergence, 96

simulated tempering, 92
Smoluchowski equation, 172
spectral radius, 49
SSA, see also stochastic simulation

algorithm
stable laws, 26, 32
stationary distribution, see also

invariant distribution
stationary measure, see also invariant

measure
Stirling’s formula, 3
stochastic differential equation

averaging, 185, 275
chemical reaction, 265
existence and uniqueness, 149

stochastic matrix, 47
stochastic process, 102

adapted, 105
modification, 128

stochastic simulation algorithm, 57, 266
nested SSA, 276

stoichiometric matrix, 263
stopping time, 105
Stratonovich integral, 154
string method, 253
strong Markov property, 58, 285

tau-leaping algorithm, 269
thermodynamic average, 12, 89
transfer matrix, 230
transition kernel, see also Markov

process, transition kernel
transition path, 247, 258
transition probability matrix, 47, 49,

55, 61
transition rate, 249
transition state, 247, 260

uncorrelated random variables, 9

variance, 7, 9
variance identity, 26
variance reduction, 83

antithetic variable, 97
control variates, 86
importance sampling, 84
Rao-Blackwellization, 86
stratified sampling, 97

white noise, 139
Wick’s theorem, 26
Wiener chaos expansion, 132
Wiener measure, 200
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Wiener process, 117, 121, 125
absorbing wall, 131
finite-dimensional distribution, 125
generator, 126
local law of the iterated logarithm,

129
properties, 127
reflecting barrier, 130

Witten Laplacian, 185
WKB analysis, 248
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