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Preface

One of the most important and beautiful theorems in projective ge-

ometry is that of Poncelet, concerning closed polygons which are

inscribed in one conic and circumscribed about another (the exact

statement is given in §1.1). The theorem is also of great depth in

that it relates to a large body of mathematics. The aim of this book

is to explore these relations, which provide much insight into several

important mathematical topics.

The topics in question are Poncelet’s theorem, billiards in an

ellipse, and double queues. At first sight these topics seem unrelated,

belonging to three distinct mathematical fields: geometry, dynamical

systems, and probability. But there is a hidden thread tying these

topics together: the existence of an underlying structure (we name it

the Poncelet correspondence M (see §1.1)) which turns out to be an

elliptic curve. As is well known, elliptic curves can be endowed with

a group structure, and the exploitation of this structure sheds much

light on the aforementioned topics.

The only prerequisites for reading this book are the following

standard subjects covered in undergraduate and first year gradu-

ate mathematics courses: complex analysis, linear algebra, and some

point set topology.

The book is organized as follows. Chapter 1 gives a description of

the main topics of the book (these topics are discussed in Parts III and

xi



xii Preface

IV). Chapters 2–14 are divided into four parts. These are followed by

the supplementary Chapter 15, “Billiards and the Poncelet Theorem”,

by S. Tabachnikov. There are also five appendices. The purpose of

these is to fill in several omissions from Parts I–IV.

Parts III and IV form the core of the book. Part III discusses

the theorems of Poncelet and Cayley (the latter is explained in §1.1)

and is based on the approach used in the papers of Griffiths and

Harris [GH1], [GH2]), which relates these theorems to elliptic curves

(over the complex field) and to their parameterization by elliptic func-

tions. Another approach, using notions from dynamical systems, is

also presented here. The papers [GH1], [GH2] take for granted var-

ious algebro-geometric notions. Part III explains and elaborates on

these notions.

Part IV discusses billiards in an ellipse and double queues and

is based on papers which I authored and co-authored ([Fl], [FH]).

The ideas in these papers are reworked and further developed in Part

IV. Furthermore, the presentation in Part IV displays a fundamental

connection between these topics and Poncelet’s theorem. Indeed the

topic of double queues, which appears last in the book, could very

well have been the first, for it is the study of double queues that led

me to the surprising connection with Poncelet’s theorem.

Chapter 15, written by S. Tabachnikov, gives an expository ac-

count of mathematical billiards and demonstrates how this theory

provides an alternative proof of Poncelet’s theorem. In addition, the

theory provides another proof of the recent result by R. Schwartz on

Poncelet grids (see §15.3).

Chapter 15 also discusses recent developments connecting Pon-

celet’s theorem to other mathematical topics: geodesics on an ellip-

soid and dual billiards.

The topics appearing in Parts I and II are collected from various

sources. Most of the material is fairly standard, a notable exception

being the discussion in Chapter 8 on division points on elliptic curves,

the treatment being a modification of the one given in [GH2]. Part

I deals with projective geometry, and Part II deals with complex

analysis. The treatment of topics presented in Parts I and II is by

no means complete, nor is it intended to be. Rather, the choice of
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material presented in these parts is dictated by the desire to make

Parts III and IV accessible to as wide an audience as possible. The

knowledgeable reader can immediately proceed to Parts III and IV.

The same advice is offered to the less knowledgeable reader, who can

occasionally turn back to Parts I and II, as the need arises.

It is of course possible to discuss projective geometry with coor-

dinates coming from any preassigned field, but we consider only the

complex projective plane and, occasionally, the real projective plane.

The reason for this restriction is that the results of Parts III and IV

make use of complex analysis.

In conclusion, many topics are treated in the book, all relating

to Poncelet’s theorem. In this sense, the approach of this book fol-

lows the maxim of the Talmudic sage Abaye “from topic to topic, yet

always in the same topic” (Babylonian Talmud, Tractate Kiddushin,

p. 6a). The proof of Poncelet’s theorem reveals deep connections be-

tween the seemingly disparate subjects treated in this book. It is this

aspect of Poncelet’s theorem that has drawn me to a detailed study of

it and its ramifications. The book demonstrates that Poncelet’s the-

orem serves as a prism through which one can learn and appreciate a

lot of beautiful mathematics.
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erous contribution of the supplementary chapter “Billiards and the

Poncelet Theorem”.

Thanks also goes to Sergei Gelfand and Arlene O’Sean for their

invaluable assistance in preparing the book for publication.

The book is an outgrowth of a series of lectures given at the NSA,

where I spent a sabbatical year during 1998–1999. I thank Mel Currie

for organizing a seminar on the subject matter. Special thanks goes

to Harvey Cohn and Donald Newman for participating in the entire

lecture series and for offering insightful comments.



List of Commonly Used
Symbols

:= symbol used to indicate that the left-hand

side is defined by the right-hand side

{p : p has property A} set of elements p having property A

iff if and only if

� q.e.d.

Z set of integers

R set of real numbers

C set of complex numbers

Ĉ complex sphere

Re z, Im z real and imaginary parts of complex

number z

|z| absolute value of complex number z

arg z argument of complex number z �= 0

detA or |A| determinant of square matrix A

f |A restriction of function f to set A

f ◦ g composition of the two mappings f and g

f−1 transformation inverse to f

a ∈ A a is a member of set A

a /∈ A a is not a member of set A

f(A) image of set A under the mapping f

xv



xvi List of Commonly Used Symbols

�A or |A| cardinality of A = number of elements in A

A ⊂ B A is a subset of B

A ∪ B union of A and B = set of elements either

in A or in B

A ∩ B intersection of A and B = set of elements

in both A and B

A\B set of elements in A and not in B

A × B product of A and B = {(a, b) : a∈A, b ∈ B}
∅ the empty set
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