
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Vector bundles on degenerations of elliptic curves and Yang–Baxter equations
About this Title
Igor Burban, Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany and Bernd Kreussler, Mary Immaculate College, South Circular Road, Limerick, Ireland
Publication: Memoirs of the American Mathematical Society
Publication Year:
2012; Volume 220, Number 1035
ISBNs: 978-0-8218-7292-5 (print); 978-0-8218-9207-7 (online)
DOI: https://doi.org/10.1090/S0065-9266-2012-00654-X
Published electronically: March 9, 2012
Keywords: Yang–Baxter equations,
vector bundles on genus one curves and elliptic fibrations,
derived categories of coherent sheaves,
Massey products
MSC: Primary 14F05, 14H60, 14H70, 16T25
Table of Contents
Chapters
- Introduction
- 1. Yang–Baxter Equations
- 2. Massey Products and AYBE – a Single Curve
- 3. Massey Products and AYBE – Families of Curves
- 4. Explicit Calculations – Smooth Curves
- 5. Explicit Calculations – Singular Curves
- 6. Summary
Abstract
In this paper we introduce the notion of a geometric associative $r$-matrix attached to a genus one fibration with a section and irreducible fibres. It allows us to study degenerations of solutions of the classical Yang–Baxter equation using the approach of Polishchuk. We also calculate certain solutions of the classical, quantum and associative Yang–Baxter equations obtained from moduli spaces of (semi-)stable vector bundles on Weierstraß cubic curves.- Marcelo Aguiar, On the associative analog of Lie bialgebras, J. Algebra 244 (2001), no. 2, 492–532. MR 1859038, DOI 10.1006/jabr.2001.8877
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
- B. Angéniol and M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en géométrie algébrique, Travaux en Cours [Works in Progress], vol. 38, Hermann, Paris, 1989 (French). With an English summary. MR 1001363
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
- Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
- A. A. Belavin and V. G. Drinfel′d, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 16 (1982), no. 3, 1–29, 96 (Russian). MR 674005
- A. A. Belavin and V. G. Drinfel′d, The classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 17 (1983), no. 3, 69–70. MR 714225
- David Ben-Zvi and Thomas Nevins, $\scr D$-bundles and integrable hierarchies, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1505–1567. MR 2835323, DOI 10.4171/JEMS/287
- Lesya Bodnarchuk, Igor Burban, Yuriy Drozd, and Gert-Martin Greuel, Vector bundles and torsion free sheaves on degenerations of elliptic curves, Global aspects of complex geometry, Springer, Berlin, 2006, pp. 83–128. MR 2264108, DOI 10.1007/3-540-35480-8_{3}
- Lesya Bodnarchuk, Yuriy Drozd, and Gert-Martin Greuel, Simple vector bundles on plane degenerations of an elliptic curve, Trans. Amer. Math. Soc. 364 (2012), no. 1, 137–174. MR 2833580, DOI 10.1090/S0002-9947-2011-05354-7
- Lesya Yu. Bodnarchuk and Yuriy A. Drozd, Stable vector bundles over cuspidal cubics, Cent. Eur. J. Math. 1 (2003), no. 4, 650–660. MR 2040656, DOI 10.2478/BF02475185
- V. M. Buchstaber, G. Felder, and A. P. Veselov, Elliptic Dunkl operators, root systems, and functional equations, Duke Math. J. 76 (1994), no. 3, 885–911. MR 1309335, DOI 10.1215/S0012-7094-94-07635-7
- I. Burban, Abgeleitete Kategorien und Matrixprobleme, Ph.D. Thesis, Kaiserslautern 2003, available at http://deposit.ddb.de/cgi-bin/dokserv?idn=968798276.
- Ī. Ī. Burban, Stable bundles on a rational curve with one simple double point, Ukraïn. Mat. Zh. 55 (2003), no. 7, 867–874 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 55 (2003), no. 7, 1043–1053. MR 2073856, DOI 10.1023/B:UKMA.0000010603.96562.c9
- I. Burban, Yu. Drozd, and G.-M. Greuel, Vector bundles on singular projective curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1–15. MR 1866891
- I. Burban, T. Henrich, Semi-stable vector bundles on elliptic curves and the associative Yang–Baxter equation, J. Geom. Phys 62 (2012), no. 2, 312–329.
- Igor Burban and Bernd Kreußler, On a relative Fourier-Mukai transform on genus one fibrations, Manuscripta Math. 120 (2006), no. 3, 283–306. MR 2243564, DOI 10.1007/s00229-006-0013-y
- Igor Burban and Bernd Kreußler, Derived categories of irreducible projective curves of arithmetic genus one, Compos. Math. 142 (2006), no. 5, 1231–1262. MR 2264663, DOI 10.1112/S0010437X06002090
- I. Burban, B. Kreußler, Analytic Moduli Spaces of Vector Bundles on Families of Curves, preprint 2008.
- K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396
- I. V. Cherednik, Integrable differential equations and coverings of elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 2, 384–406 (Russian). MR 697302
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
- Yuri A. Drozd and Gert-Martin Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1–54. MR 1872612, DOI 10.1006/jabr.2001.8934
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. III, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. Based, in part, on notes left by Harry Bateman. MR 0066496
- Pavel Etingof and David Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), no. 1, 1–41. MR 1403351, DOI 10.1007/BF01587938
- Sergey Fomin and Anatol N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 147–182. MR 1667680
- Robert Friedman, John W. Morgan, and Edward Witten, Vector bundles over elliptic fibrations, J. Algebraic Geom. 8 (1999), no. 2, 279–401. MR 1675162
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- A. Grothendieck, Quelques problèmes de modules, Familles d’espaces complexes et fondements de la géométrie analytique, Séminaire Henri Cartan 1960/61, 13, Fascicule 2, Éxpose 16, 1962.
- V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and $A_\infty$-structures, Bull. Soc. Math. Belg. Sér. A 38 (1986), 237–246 (1987). MR 885535
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- T. Henrich, Remarks on rational solutions of Yang–Baxter equations, J. Phys. Conf. Ser. 346 (2012), no. 1.
- Daniel Hernández Ruipérez, Ana Cristina López Martín, Darío Sánchez Gómez, and Carlos Tejero Prieto, Moduli spaces of semistable sheaves on singular genus 1 curves, Int. Math. Res. Not. IMRN 23 (2009), 4428–4462. MR 2558337, DOI 10.1093/imrn/rnp094
- A. Hurwitz, R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, 1929.
- T. V. Kadeishvili, The category of differential coalgebras and the category of $A(\infty )$-algebras, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 77 (1985), 50–70 (Russian, with English summary). MR 862919
- A. Kirillov, Quadratic algebras-II, preprint in preparation.
- S. M. Khoroshkin, A. A. Stolin, and V. N. Tolstoy, $q$-power function over $q$-commuting variables and deformed $XXX$ and $XXZ$ chains, Yadernaya Fiz. 64 (2001), no. 12, 2262–2267; English transl., Phys. Atomic Nuclei 64 (2001), no. 12, 2173–2178. MR 1883225, DOI 10.1134/1.1432921
- M. Kontsevich and Y. Soibelman, Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153–219. MR 2596638
- Ernst Kunz, Residuen von Differentialformen auf Cohen-Macaulay-Varietäten, Math. Z. 152 (1977), no. 2, 165–189 (German). MR 480516, DOI 10.1007/BF01214187
- Derek F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol. 80, Springer-Verlag, New York, 1989. MR 1007595
- P. Lowrey, Interactions between autoequivalences, stability conditions, and moduli problems, arXiv:0905.1731.
- D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, $A$-infinity structure on Ext-algebras, J. Pure Appl. Algebra 213 (2009), no. 11, 2017–2037. MR 2533303, DOI 10.1016/j.jpaa.2009.02.006
- H. P. McKean, Theta functions, solitons, and singular curves, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 237–254. MR 535596
- S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Internat. Math. Res. Notices 3 (1999), 153–164. MR 1672242, DOI 10.1155/S1073792899000070
- Akihiko Morimoto, Sur la classification des espaces fibrés vectoriels holomorphes sur un tore complexe admettant des connexions holomorphes, Nagoya Math. J. 15 (1959), 83–154 (French). MR 109353
- Motohico Mulase, Algebraic theory of the KP equations, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 151–217. MR 1314667
- David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 688651
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Tadao Oda, Vector bundles on an elliptic curve, Nagoya Math. J. 43 (1971), 41–72. MR 318151
- Alexander Odesskii and Vladimir Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Comm. Math. Phys. 278 (2008), no. 1, 83–99. MR 2367198, DOI 10.1007/s00220-007-0361-9
- Th. Peternell and R. Remmert, Differential calculus, holomorphic maps and linear structures on complex spaces, Several complex variables, VII, Encyclopaedia Math. Sci., vol. 74, Springer, Berlin, 1994, pp. 97–144. MR 1326619, DOI 10.1007/978-3-662-09873-8_{3}
- A. Polishchuk, Homological mirror symmetry with higher products, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999) AMS/IP Stud. Adv. Math., vol. 23, Amer. Math. Soc., Providence, RI, 2001, pp. 247–259. MR 1876072
- A. Polishchuk, Classical Yang-Baxter equation and the $A_\infty$-constraint, Adv. Math. 168 (2002), no. 1, 56–95. MR 1907318, DOI 10.1006/aima.2001.2047
- A. Polishchuk, Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 573–617. MR 2641203, DOI 10.1007/978-0-8176-4747-6_{1}9
- I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295–366. MR 1887637, DOI 10.1090/S0894-0347-02-00387-9
- Travis Schedler, Trigonometric solutions of the associative Yang-Baxter equation, Math. Res. Lett. 10 (2003), no. 2-3, 301–321. MR 1981906, DOI 10.4310/MRL.2003.v10.n3.a3
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564
- A. Stolin, On rational solutions of Yang-Baxter equation for ${\mathfrak {s}}{\mathfrak {l}}(n)$, Math. Scand. 69 (1991), no. 1, 57–80. MR 1143474, DOI 10.7146/math.scand.a-12369