Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Medial/Skeletal Linking Structures for Multi-Region Configurations

About this Title

James Damon, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 and Ellen Gasparovic, Department of Mathematics, Duke University, Box 90320, Durham, North Carolina 27708-0320

Publication: Memoirs of the American Mathematical Society
Publication Year: 2017; Volume 250, Number 1193
ISBNs: 978-1-4704-2680-4 (print); 978-1-4704-4210-1 (online)
DOI: https://doi.org/10.1090/memo/1193
Published electronically: September 7, 2017
Keywords: Blum medial axis, skeletal structures, spherical axis, Whitney stratified sets, medial and skeletal linking structures, generic linking properties, model configurations, radial flow, linking flow, multi-distance functions, height-distance functions, partial multijet spaces, transversality theorems, measures of closeness, measures of significance, tiered linking graph
MSC: Primary 53A07, 58A35; Secondary 68U05

View full volume PDF

View other years and numbers:

Table of Contents

Chapters

  • 1. Introduction

1. Medial/Skeletal Linking Structures

  • 2. Multi-Region Configurations in ${\mathbb R}^{n+1}$
  • 3. Skeletal Linking Structures for Multi-Region Configurations in ${\mathbb R}^{n+1}$
  • 4. Blum Medial Linking Structure for a Generic Multi-Region Configuration
  • 5. Retracting the Full Blum Medial Structure to a Skeletal Linking Structure

2. Positional Geometry of Linking Structures

  • 6. Questions Involving Positional Geometry of a Multi-Region Configuration
  • 7. Shape Operators and Radial Flow for a Skeletal Structure
  • 8. Linking Flow and Curvature Conditions
  • 9. Properties of Regions Defined Using the Linking Flow
  • 10. Global Geometry via Medial and Skeletal Linking Integrals
  • 11. Positional Geometric Properties of Multi-Region Configurations

3. Generic Properties of Linking Structures via Transversality Theorems

  • 12. Multi-Distance and Height-Distance Functions and Partial Multi-Jet Spaces
  • 13. Generic Blum Linking Properties via Transversality Theorems
  • 14. Generic Properties of Blum Linking Structures
  • 15. Concluding Generic Properties of Blum Linking Structures

4. Proofs and Calculations for the Transversality Theorems

  • 16. Reductions of the Proofs of the Transversality Theorems
  • 17. Families of Perturbations and their Infinitesimal Properties
  • 18. Completing the Proofs of the Transversality Theorems
  • A. List of Frequently Used Notation

Abstract

We consider a generic configuration of regions, consisting of a collection of distinct compact regions $\{ \Omega _i\}$ in $\mathbb {R}^{n+1}$ which may be either regions with smooth boundaries disjoint from the others or regions which meet on their piecewise smooth boundaries $\mathcal {B}_i$ in a generic way. We introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions’, individual shapes and geometric properties as well as the “positional geometry”, of the collection. The linking structure extends in a minimal way the individual “skeletal structures”, on each of the regions. This allows us to significantly extend the mathematical methods introduced for single regions to the configuration of regions.

We prove for a generic configuration of regions the existence of a special type of Blum linking structure which builds upon the Blum medial axes of the individual regions. As part of this, we introduce the “spherical axis” , which is the analogue of the medial axis but for directions. These results require proving several transversality theorems for certain associated “multi-distance”, and “height-distance”, functions for such configurations. We show that by relaxing the conditions on the Blum linking structures we obtain the more general class of skeletal linking structures which still capture the geometric properties.

The skeletal linking structure is used to analyze the “positional geometry”, of the configuration. This involves using the “linking flow”, to identify neighborhoods of the configuration regions which capture their positional relations. As well as yielding geometric invariants which capture the shapes and geometry of individual regions, these structures are used to define invariants which measure positional properties of the configuration such as: measures of relative closeness of neighboring regions and relative significance of the individual regions for the configuration.

All of these invariants are computed by formulas involving “skeletal linking integrals”, on the internal skeletal structures of the regions. These invariants are then used to construct a “tiered linking graph”, which for given thresholds of closeness and/or significance, identifies subconfigurations and provides a hierarchical ordering in terms of order of significance.

References [Enhancements On Off] (What's this?)

References
  • V. I. Arnol′d, Normal forms of functions near degenerate critical points, the Weyl groups $A_{k},D_{k},E_{k}$ and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25 (Russian). MR 0356124
  • Edward Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), no. 3, 277–300. MR 481081, DOI 10.1007/BF01390279
  • H. Blum and R. Nagel, Shape description using weighted symmetric axis features, Pattern Recognition 10 (1978) 167–180.
  • S. Bouix., K. Siddiqi, A. Tannenbaum, and S. Zucker, Hamilton–Jacobi Skeleton, Int. Conf. Computer Vision, Kerkyra, Greece, (1999) 828-834.
  • J. W. Bruce, P. J. Giblin, and C. G. Gibson, Symmetry sets, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 1-2, 163–186. MR 824218, DOI 10.1017/S0308210500026263
  • J. W. Bruce, P. J. Giblin, and F. Tari, Ridges, Crests, and Sub-Parabolic Lines of Evolving Surfaces, Int. Jour. Comp. Vision 18 (3) (1996) 195–210.
  • E. Chaney, S. Pizer, et al, Automatic Male Pelvis Segmentation from CT Images via Statistically Trained Multi-Object Deformable M-rep Models, Amer. Soc. Therapeutic Radiology and Oncology (ASTRO) (2004).
  • James Damon, Smoothness and geometry of boundaries associated to skeletal structures. I. Sufficient conditions for smoothness, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1941–1985 (English, with English and French summaries). MR 2038785
  • James Damon, Smoothness and geometry of boundaries associated to skeletal structures. II. Geometry in the Blum case, Compos. Math. 140 (2004), no. 6, 1657–1674. MR 2098407, DOI 10.1112/S0010437X04000570
  • J. Damon Determining the Geometry of Boundaries of Objects from Medial Data, Int. Jour. Comp. Vision 63 (1) (2005) 45–64
  • James Damon, Global geometry of regions and boundaries via skeletal and medial integrals, Comm. Anal. Geom. 15 (2007), no. 2, 307–358. MR 2344326
  • James Damon, Generic properties of solutions to partial differential equations, Arch. Rational Mech. Anal. 140 (1997), no. 4, 353–403. MR 1489320, DOI 10.1007/s002050050071
  • J. Damon The unfolding and determinacy theorems for subgroups of $\cA$ and $\cK$, Memoirs of the Amer. Math. Soc. 50 no. 306. (1984).
  • James Damon, Swept regions and surfaces: modeling and volumetric properties, Theoret. Comput. Sci. 392 (2008), no. 1-3, 66–91. MR 2394985, DOI 10.1016/j.tcs.2007.10.004
  • James Damon, Finite determinacy and topological triviality. II. Sufficient conditions and topological stability, Compositio Math. 47 (1982), no. 2, 101–132. MR 677014
  • P. Dimitrov, J. Damon, and K. Siddiqi, Flux invariants for shape, Proc. IEEE CVPR (2003) 1063–1069.
  • Jean-Paul Dufour, Sur la stabilité des diagrammes d’applications différentiables, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 153–174 (French). MR 448395
  • Ellen Gasparovic, The Blum Medial Linking Structure for Multi-Region Analysis, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–The University of North Carolina at Chapel Hill. MR 3054847
  • Peter Giblin, Symmetry sets and medial axes in two and three dimensions, The mathematics of surfaces, IX (Cambridge, 2000) Springer, London, 2000, pp. 306–321. MR 1846302
  • P. J. Giblin and B. B. Kimia, A formal classification of 3D medial axis points and their local geometry, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2) (2004) 238–251.
  • Transitions of the 3D Medial Axis under a One-Parameter Family of Deformations, Proc. ECCV, LNCS 2351 (2002) 718–734.
  • Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 0436203
  • M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14. MR 0341518
  • K. Gorczowski, M. Styner, J-Y. Jeong, J. S. Marron, J. Piven, H. C. Hazlett, S. M. Pizer, G. Gerig, Multi-Object Analysis of Volume, Pose, and Shape Using Statistical Discrimination, IEEE TPAMI 32 (4) (2010) 652–661.
  • R. Mark Goresky, Triangulation of stratified objects, Proc. Amer. Math. Soc. 72 (1978), no. 1, 193–200. MR 500991, DOI 10.1090/S0002-9939-1978-0500991-2
  • Alfred Gray, Tubes, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. MR 1044996
  • J. Jeong, Estimation of Probability Distribution on Multiple Anatomical Object Complex, Ph.D. Thesis, Dept. Comp. Science, Univ. North Carolina at Chapel Hill, 2008.
  • J. Jeong, S. Pizer, and S. Ray, Statistics on Anatomic Objects Reflecting Inter-Object Relations, MICCAI (2006).
  • J. Jeong, J. Stough, S. Marron, and S. Pizer, Conditional-Mean Initialization Using Neighboring Objects in Deformable Model Segmentation, SPIE (2008).
  • B. B. Kimia, A. Tannenbaum, and S. Zucker, Toward a computational theory of shape: An overview, O. Faugeras ed., Three Dimensional Computer Vision, MIT Press, 1990.
  • E. J. N. Looijenga, Structural Stability of Smooth Families of $C^{\infty }$ Functions, Ph. D. Thesis, Universiteit van Amsterdam, 1974.
  • Eduard Looijenga, On the semi-universal deformation of a simple-elliptic hypersurface singularity. Unimodularity, Topology 16 (1977), no. 3, 257–262. MR 450269, DOI 10.1016/0040-9383(77)90006-4
  • Lynn H. Loomis and Shlomo Sternberg, Advanced calculus, Jones and Bartlett Publishers, Boston, MA, 1990. MR 1140004
  • C. Lu, S. Pizer, S. Joshi, and J. Jeong, Statistical Multi-Object Shape Models, Int. Jour. Comp. Vision 75 (3) (2007) 387–404.
  • John N. Mather, Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 195–232. MR 0368064
  • John N. Mather, Distance from a submanifold in Euclidean space, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 199–216. MR 713249, DOI 10.1038/301078a0
  • John Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475–506. MR 2958928, DOI 10.1090/S0273-0979-2012-01383-6
  • John N. Mather, Stability of $C^{\infty }$ mappings. I. The division theorem, Ann. of Math. (2) 87 (1968), 89–104. MR 232401, DOI 10.2307/1970595
  • John N. Mather, Stability of $C^{\infty }$ mappings. II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254–291. MR 259953, DOI 10.2307/1970668
  • John N. Mather, On Thom-Boardman singularities, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 233–248. MR 0353359
  • S. Musuvathy, E. Cohen, and J. Damon, Computing the Medial Axis for Generic 3D Regions Bounded by B-Spline Surfaces, Computer Aided Design 43 (11) (2011) 1485–1495.
  • S. Pizer et al, Multiscale Medial Loci and their Properties, Int. Jour. Comp. Vision 55 no. 2-3 (2003) 155–179.
  • S. Pizer et al, Deformable M-reps for 3D Medical Image Segmentation, Int. Jour. Comp. Vision 55 (2) (3) (2003) 85–106.
  • Stephen M. Pizer, Sungkyu Jung, Dibyendusekhar Goswami, Jared Vicory, Xiaojie Zhao, Ritwik Chaudhuri, James N. Damon, Stephan Huckemann, and J. S. Marron, Nested sphere statistics of skeletal models, Innovations for shape analysis, Math. Vis., Springer, Heidelberg, 2013, pp. 93–115. MR 3075829, DOI 10.1007/978-3-642-34141-0_{5}
  • Kaleem Siddiqi and Stephen M. Pizer (eds.), Medial representations, Computational Imaging and Vision, vol. 37, Springer, New York, 2008. Mathematics, algorithms and applications. MR 2547467
  • K. M. Pohl, et al, A unifying approach to registration,segmentation, and intensity correction. MICCAI 2005, LNCS 3749, 310–318.
  • I. R. Porteous, Geometric differentiation for the intelligence of curves and surfaces, Cambridge University Press, Cambridge, 1994. MR 1302171
  • R. T. Seeley, Extension of $C^{\infty }$ functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625–626. MR 165392, DOI 10.1090/S0002-9939-1964-0165392-8
  • K. Siddiqi, S. Bouix, A. Tannenbaum and S. Zucker, The Hamilton–Jacobi Skeleton, Int. Jour. Comp. Vision 48 (2002) 215–231.
  • Dirk Siersma, Properties of conflict sets in the plane, Geometry and topology of caustics—CAUSTICS ’98 (Warsaw), Banach Center Publ., vol. 50, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 267–276. MR 1739670
  • Jorge Sotomayor, Dirk Siersma, and Ronaldo Garcia, Curvatures of conflict surfaces in Euclidean 3-space, Geometry and topology of caustics—CAUSTICS ’98 (Warsaw), Banach Center Publ., vol. 50, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 277–285. MR 1739671
  • M. Spivak, A Comprehensive Introduction to Differential Geometry, vols I-V, Publish or Perish Inc., Berkeley, CA, 1975, 1979.
  • René Thom, Structural stability and morphogenesis, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1976. An outline of a general theory of models; Translated from the French by D. H. Fowler; With a foreword by C. H. Waddington; Second printing. MR 0488156
  • R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284 (French). MR 239613, DOI 10.1090/S0002-9904-1969-12138-5
  • Martijn van Manen, The geometry of conflict sets, Rijksuniversiteit te Utrecht, Utrecht, 2003. Dissertation, Universiteit Utrecht, Utrecht, 2003. MR 2000001
  • Andrei Verona, Stratified mappings—structure and triangulability, Lecture Notes in Mathematics, vol. 1102, Springer-Verlag, Berlin, 1984. MR 771120
  • C. T. C. Wall, Geometric properties of generic differentiable manifolds, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin, 1977, pp. 707–774. Lecture Notes in Math., Vol. 597. MR 0494233
  • Hermann Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939), no. 2, 461–472. MR 1507388, DOI 10.2307/2371513
  • Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 192520, DOI 10.2307/1970400
  • Yosef Yomdin, On the local structure of a generic central set, Compositio Math. 43 (1981), no. 2, 225–238. MR 622449