
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals
About this Title
Guozhen Lu, Jiawei Shen and Lu Zhang
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 281, Number 1388
ISBNs: 978-1-4704-5537-8 (print); 978-1-4704-7321-1 (online)
DOI: https://doi.org/10.1090/memo/1388
Published electronically: January 3, 2023
Keywords: Multi-parameter dilations,
singular Radon transforms,
Calderón-Zygmund operators,
discrete Littlewood-Paley-Stein theory,
multi-parameter Hardy spaces
Table of Contents
Chapters
- 1. Introduction
- 2. Single-parameter theory
- 3. Multi-parameter setting: Product theory
- 4. General multi-parameter singular integrals and Hardy spaces
Abstract
The main purpose of this paper is to establish the theory of the multi-parameter Hardy spaces $H^p$ ($0<p\leq 1$) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the $L^p$ $(1<p<\infty )$ estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Carathéodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013).
More precisely, Street (2014) studied the $L^p$ $(1<p<\infty )$ boundedness, using elementary operators, of a type of generalized multi-parameter Calderón Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space $H^p$ ($0<p\leq 1$) associated with the multi-parameter structures arising from the multi-parameter Carnot-Carathéodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and then establish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators.
- A. Baernstein II and E. T. Sawyer, Embedding and multiplier theorems for $H^P(\textbf {R}^n)$, Mem. Amer. Math. Soc. 53 (1985), no. 318, iv+82. MR 776176, DOI 10.1090/memo/0318
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171. MR 450888, DOI 10.1016/S0001-8708(77)80016-9
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- Anthony Carbery and Andreas Seeger, $H^p$- and $L^p$-variants of multiparameter Calderón-Zygmund theory, Trans. Amer. Math. Soc. 334 (1992), no. 2, 719–747. MR 1072104, DOI 10.1090/S0002-9947-1992-1072104-4
- L. Carleson, A counterexample for measures bounded on $H^{p}$ for the bidisc, Mittag-Leffler Report No. 7, 1974.
- Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H^{1}$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201. MR 584078, DOI 10.2307/1971324
- Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. MR 766959, DOI 10.1090/S0273-0979-1985-15291-7
- Sun-Yung A. Chang and Robert Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468. MR 658542, DOI 10.2307/2374150
- Sun-Yung A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620. MR 534766, DOI 10.2307/1971229
- Jiao Chen, Hörmander type theorem for Fourier multipliers with optimal smoothness on Hardy spaces of arbitrary number of parameters, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 8, 1083–1106. MR 3668643, DOI 10.1007/s10114-017-6526-3
- Jiao Chen, Wei Ding, and Guozhen Lu, Boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces, Forum Math. 32 (2020), no. 4, 919–936. MR 4116647, DOI 10.1515/forum-2019-0319
- Jiao Chen and Guozhen Lu, Hörmander type theorem on bi-parameter Hardy spaces for bi-parameter Fourier multipliers with optimal smoothness, Rev. Mat. Iberoam. 34 (2018), no. 4, 1541–1561. MR 3896241, DOI 10.4171/rmi/1035
- Jiao Chen, Liang Huang, and Guozhen Lu, Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces, Math. Res. Lett. 28 (2021), no. 4, 1047–1084. MR 4344696, DOI 10.4310/MRL.2021.v28.n4.a4
- Jiao Chen, Liang Huang, and Guozhen Lu, Hörmander Fourier multiplier theorems with optimal Besov regularity on multi-parameter Hardy spaces, Forum Math. 33 (2021), no. 6, 1605–1627. MR 4334000, DOI 10.1515/forum-2021-0201
- Jiao Chen and Guozhen Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal. 101 (2014), 98–112. MR 3178381, DOI 10.1016/j.na.2014.01.005
- Wei-Liang Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98–105 (German). MR 1880, DOI 10.1007/BF01450011
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- Michael Christ, Lectures on singular integral operators, CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1104656
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Wei Ding and Guozhen Lu, Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators, Trans. Amer. Math. Soc. 368 (2016), no. 10, 7119–7152. MR 3471087, DOI 10.1090/tran/6576
- Wei Ding and Guozhen Lu, Boundedness of inhomogeneous Journé’s type operators on multi-parameter local Hardy spaces, Nonlinear Anal. 197 (2020), 111816, 31. MR 4073512, DOI 10.1016/j.na.2020.111816
- Wei Ding and Guozhen Lu, Fefferman type criterion on weighted bi-parameter local Hardy spaces and boundedness of bi-parameter pseudodifferential operators, Forum Math. 34 (2022), no. 6, 1679–1705. MR 4504112, DOI 10.1515/forum-2022-0192
- Wei Ding, Guozhen Lu, and Yueping Zhu, Multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integrals and their atomic decomposition, Forum Math. 28 (2016), no. 1, 25–42. MR 3441104, DOI 10.1515/forum-2014-0051
- Wei Ding, Guozhen Lu, and YuePing Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 (2019), 352–380. MR 3925053, DOI 10.1016/j.na.2019.02.014
- Wei Ding, Guozhen Lu, and Yueping Zhu, Discrete Littlewood-Paley-Stein characterization of multi-parameter local Hardy spaces, Forum Math. 31 (2019), no. 6, 1467–1488. MR 4026464, DOI 10.1515/forum-2019-0038
- Yong Ding, Yongsheng Han, Guozhen Lu, and Xinfeng Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w\ (\Bbb R^n\times \Bbb R^m)$, Potential Anal. 37 (2012), no. 1, 31–56. MR 2928237, DOI 10.1007/s11118-011-9244-y
- Yong Ding, Guo Zhen Lu, and Bo Lin Ma, Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 4, 603–620. MR 2591640, DOI 10.1007/s10114-010-8352-8
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. MR 664621, DOI 10.1016/S0001-8708(82)80001-7
- R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369. MR 1439553
- Sarah H. Ferguson and Michael T. Lacey, A characterization of product BMO by commutators, Acta Math. 189 (2002), no. 2, 143–160. MR 1961195, DOI 10.1007/BF02392840
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- R. F. Gundy and E. M. Stein, $H^{p}$ theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026–1029. MR 524328, DOI 10.1073/pnas.76.3.1026
- Xiaolong Han, Guozhen Lu, and Yayuan Xiao, Dual spaces of weighted multi-parameter Hardy spaces associated with the Zygmund dilation, Adv. Nonlinear Stud. 12 (2012), no. 3, 533–553. MR 2934675, DOI 10.1515/ans-2012-0306
- Yongsheng Han, Ji Li, and Guozhen Lu, Duality of multiparameter Hardy spaces $H^p$ on spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 4, 645–685. MR 2789471
- Yongsheng Han, Ji Li, and Guozhen Lu, Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type, Trans. Amer. Math. Soc. 365 (2013), no. 1, 319–360. MR 2984061, DOI 10.1090/S0002-9947-2012-05638-8
- Yongsheng Han, Ji Li, Guozhen Lu, and Peiyong Wang, $H^p\to H^p$ boundedness implies $H^p\to L^p$ boundedness, Forum Math. 23 (2011), no. 4, 729–756. MR 2820388, DOI 10.1515/FORM.2011.026
- Yongsheng Han, Chincheng Lin, Guozhen Lu, Zhuoping Ruan, and Eric T. Sawyer, Hardy spaces associated with different homogeneities and boundedness of composition operators, Rev. Mat. Iberoam. 29 (2013), no. 4, 1127–1157. MR 3148598, DOI 10.4171/RMI/751
- Y. Han, and G. Lu, Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with flag singular integrals, arXiv:0801.1701.
- Yongsheng Han and Guozhen Lu, Some recent works on multiparameter Hardy space theory and discrete Littlewood-Paley analysis, Trends in partial differential equations, Adv. Lect. Math. (ALM), vol. 10, Int. Press, Somerville, MA, 2010, pp. 99–191. MR 2648281
- Y. Han and G. Lu, Endpoint estimates for singular integral operators and multi-parameter Hardy spaces associated with the Zygmund dilation, unpublished manuscript (2006).
- Yongsheng Han, Guozhen Lu, and Zhuoping Ruan, Boundedness criterion of Journé’s class of singular integrals on multiparameter Hardy spaces, J. Funct. Anal. 264 (2013), no. 5, 1238–1268. MR 3010020, DOI 10.1016/j.jfa.2012.12.006
- Yongsheng Han, Guozhen Lu, and Zhuoping Ruan, Boundedness of singular integrals in Journé’s class on weighted multiparameter Hardy spaces, J. Geom. Anal. 24 (2014), no. 4, 2186–2228. MR 3261735, DOI 10.1007/s12220-013-9421-x
- Yongsheng Han, Guozhen Lu, and Eric Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE 7 (2014), no. 7, 1465–1534. MR 3293443, DOI 10.2140/apde.2014.7.1465
- Y. Han, G. Lu, and K. Zhao, Discrete Calderón’s identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces, J. Geom. Anal. 20 (2010), no. 3, 670–689. MR 2610894, DOI 10.1007/s12220-010-9123-6
- Yongsheng Han, Detlef Müller, and Dachun Yang, A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal. , posted on (2008), Art. ID 893409, 250. MR 2485404, DOI 10.1155/2008/893409
- Qing Hong and Guozhen Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud. 14 (2014), no. 4, 1055–1082. MR 3269385, DOI 10.1515/ans-2014-0413
- Qing Hong and Guozhen Lu, Weighted $L^p$ estimates for rough bi-parameter Fourier integral operators, J. Differential Equations 265 (2018), no. 3, 1097–1127. MR 3788636, DOI 10.1016/j.jde.2018.03.024
- Qing Hong, Guozhen Lu, and Lu Zhang, $L^p$ boundedness of rough bi-parameter Fourier integral operators, Forum Math. 30 (2018), no. 1, 87–107. MR 3739329, DOI 10.1515/forum-2016-0221
- Qing Hong and Lu Zhang, $L^p$ estimates for bi-parameter and bilinear Fourier integral operators, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 2, 165–186. MR 3594390, DOI 10.1007/s10114-016-6269-6
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 388463, DOI 10.1007/BF02392052
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- B. Jessen, J. Marcinkiewicz, and A. Zygmund, Note on the differentiability of multiple integrals, Funda. Math. 25 (1935), 217-234
- Jean-Lin Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55–91. MR 836284, DOI 10.4171/RMI/15
- Jean-Lin Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96 (1986), no. 4, 593–598. MR 826486, DOI 10.1090/S0002-9939-1986-0826486-9
- Jean-Lin Journé, Two problems of Calderón-Zygmund theory on product-spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 111–132. MR 949001
- Michael T. Lacey, Stefanie Petermichl, Jill C. Pipher, and Brett D. Wick, Multiparameter Riesz commutators, Amer. J. Math. 131 (2009), no. 3, 731–769. MR 2530853, DOI 10.1353/ajm.0.0059
- Guozhen Lu and Zhuoping Ruan, Duality theory of weighted Hardy spaces with arbitrary number of parameters, Forum Math. 26 (2014), no. 5, 1429–1457. MR 3334035, DOI 10.1515/forum-2012-0018
- Guo Zhen Lu and Yue Ping Zhu, Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 1, 39–52. MR 3001008, DOI 10.1007/s10114-012-1402-7
- S. G. Mihlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.) 109 (1956), 701–703 (Russian). MR 80799
- Akihiko Miyachi, On some Fourier multipliers for $H^{p}(\textbf {R}^{n})$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 1, 157–179. MR 573335
- Detlef Müller, Fulvio Ricci, and Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), no. 2, 199–233. MR 1312498, DOI 10.1007/BF01245180
- Detlef Müller, Fulvio Ricci, and Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), no. 2, 267–291. MR 1376298, DOI 10.1007/BF02622116
- Camil Muscalu, Jill Pipher, Terence Tao, and Christoph Thiele, Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2, 269–296. MR 2134868, DOI 10.1007/BF02392566
- Camil Muscalu, Jill Pipher, Terence Tao, and Christoph Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam. 22 (2006), no. 3, 963–976. MR 2320408, DOI 10.4171/RMI/480
- Alexander Nagel, Fulvio Ricci, and Elias M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal. 181 (2001), no. 1, 29–118. MR 1818111, DOI 10.1006/jfan.2000.3714
- Alexander Nagel, Fulvio Ricci, Elias Stein, and Stephen Wainger, Singular integrals with flag kernels on homogeneous groups, I, Rev. Mat. Iberoam. 28 (2012), no. 3, 631–722. MR 2949616, DOI 10.4171/RMI/688
- Alexander Nagel, Fulvio Ricci, Elias M. Stein, and Stephen Wainger, Algebras of singular integral operators with kernels controlled by multiple norms, Mem. Amer. Math. Soc. 256 (2018), no. 1230, vii+141. MR 3862599, DOI 10.1090/memo/1230
- Alexander Nagel and Elias M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana 20 (2004), no. 2, 531–561. MR 2073131, DOI 10.4171/RMI/400
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Hilbert transforms and maximal functions related to variable curves, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 95–98. MR 545242
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Jill Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. MR 860666, DOI 10.1215/S0012-7094-86-05337-8
- Zhuoping Ruan, Weighted Hardy spaces in the three-parameter case, J. Math. Anal. Appl. 367 (2010), no. 2, 625–639. MR 2607286, DOI 10.1016/j.jmaa.2010.02.010
- Zhuoping Ruan, The duality of non-isotropic multiparameter flag Hardy spaces, PanAmer. Math. J. 18 (2008), no. 4, 77–99. MR 2467930
- Zhuo Ping Ruan, The Calderón-Zygmund decomposition and interpolation on weighted Hardy spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 10, 1967–1978. MR 2835219, DOI 10.1007/s10114-011-9338-x
- E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. MR 1175693, DOI 10.2307/2374799
- Andreas Seeger, Christopher D. Sogge, and Elias M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251. MR 1127475, DOI 10.2307/2944346
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579, DOI 10.1017/CBO9780511530029
- Jiawei Shen, Hardy Space Theory and Endpoint Estimates for Multi-Parameter Singular Radon Transforms, ProQuest LLC, Ann Arbor, MI, 2018. Thesis (Ph.D.)–Wayne State University. MR 3818762
- E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, RI, 1967, pp. 316–335. MR 482394
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms, Math. Res. Lett. 18 (2011), no. 2, 257–277. MR 2784671, DOI 10.4310/MRL.2011.v18.n2.a6
- Brian Street, Multi-parameter singular Radon transforms I: The $L^2$ theory, J. Anal. Math. 116 (2012), 83–162. MR 2892618, DOI 10.1007/s11854-012-0004-8
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms II: The $L^p$ theory, Adv. Math. 248 (2013), 736–783. MR 3107526, DOI 10.1016/j.aim.2013.08.016
- Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms III: Real analytic surfaces, Adv. Math. 229 (2012), no. 4, 2210–2238. MR 2880220, DOI 10.1016/j.aim.2011.11.016
- Brian Street, Multi-parameter singular integrals, Annals of Mathematics Studies, vol. 189, Princeton University Press, Princeton, NJ, 2014. MR 3241740, DOI 10.1515/9781400852758
- Brian Street, Multi-parameter Carnot-Carathéodory balls and the theorem of Frobenius, Rev. Mat. Iberoam. 27 (2011), no. 2, 645–732. MR 2848534, DOI 10.4171/RMI/650