
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Symbolic Extensions of Amenable Group Actions and the Comparison Property
About this Title
Tomasz Downarowicz and Guohua Zhang
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 281, Number 1390
ISBNs: 978-1-4704-5587-3 (print); 978-1-4704-7323-5 (online)
DOI: https://doi.org/10.1090/memo/1390
Published electronically: January 3, 2023
Keywords: Amenable group action,
symbolic extension,
symbolic extension entropy,
entropy structure,
superenvelope,
comparison property,
subexponential group,
residually finite group,
Følner system of quasitilings,
tiling system,
encodable tiling system
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries on actions of countable amenable groups
- 3. Entropy structure and the easy direction of the main theorem
- 4. Quasitilings and tiling systems
- 5. Quasi-symbolic extensions—the hard direction of the main theorem
- 6. The comparison property
- 7. Encodable tiling systems
- Appendix A
Abstract
In topological dynamics, the Symbolic Extension Entropy Theorem (SEET) (Boyle and Downarowicz, 2004) describes the possibility of a lossless digitalization of a dynamical system by extending it to a subshift on finitely many symbols. The theorem gives a precise estimate on the entropy of such a symbolic extension (and hence on the necessary number of symbols). Unlike in the measure-theoretic case, where Kolmogorov–Sinai entropy serves as an estimate in an analogous problem, in the topological setup the task reaches beyond the classical theory of measure-theoretic and topological entropy. Necessary are tools from an extended theory of entropy, the theory of entropy structures developed in Downarowicz (2005). The main goal of this paper is to prove the analog of the SEET for actions of (discrete infinite) countable amenable groups:
Let a countable amenable group $G$ act by homeomorphisms on a compact metric space $X$ and let $\mathcal {M}_{G}(X)$ denote the simplex of all $G$-invariant Borel probability measures on $X$. A function ${E}_{\mathsf {A}}$ on $\mathcal {M}_{G}(X)$ equals the extension entropy function $h^\pi$ of a symbolic extension $\pi :(Y,G)\to (X,G)$, where $h^\pi (\mu )=\sup \{h_\nu (Y,G): \nu \in \pi ^{-1}(\mu )\}$ ($\mu \in \mathcal {M}_{G}(X)$), if and only if ${E}_{\mathsf {A}}$ is a finite affine superenvelope of the entropy structure of $(X,G)$.
Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of $\mathbb {Z}$-actions. In full generality we are able to prove a slightly weaker version of SEET, in which symbolic extensions are replaced by quasi-symbolic extensions, i.e., extensions in form of a joining of a subshift with a zero-entropy tiling system. The notion of a tiling system is a subject of several earlier works (e.g. Downarowicz and Huczek (2018) and Downarowicz, Huczek, and Zhang (2019)) and in this paper we review and complement the theory developed there. The full version of the SEET (with genuine symbolic extensions) is proved for groups which are either residually finite or enjoy the so-called comparison property. In order to describe the range of our theorem more clearly, we devote a large portion of the paper to studying the comparison property. Our most important result in this aspect is showing that all subexponential groups have the comparison property (and thus satisfy the SEET). To summarize, the heart of the paper is the presentation of the following four major topics and the interplay between them:
- G. M. Adel′son-Vel′skiĭ and Yu. A. Šreĭder, The Banach mean on groups, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 6(78), 131–136 (Russian). MR 94726
- M. A. Akcoglu and A. del Junco, Convergence of averages of point transformations, Proc. Amer. Math. Soc. 49 (1975), 265–266. MR 360999, DOI 10.1090/S0002-9939-1975-0360999-4
- Mathias Beiglböck, Vitaly Bergelson, and Alexander Fish, Sumset phenomenon in countable amenable groups, Adv. Math. 223 (2010), no. 2, 416–432. MR 2565535, DOI 10.1016/j.aim.2009.08.009
- Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. MR 2552252, DOI 10.1090/S0894-0347-09-00637-7
- Mike Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 541–557. MR 753922, DOI 10.1017/S0143385700002133
- Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119–161. MR 2047659, DOI 10.1007/s00222-003-0335-2
- Mike Boyle, Doris Fiebig, and Ulf Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), no. 5, 713–757. MR 1924775, DOI 10.1515/form.2002.031
- Mike Boyle and David Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169–210. MR 1418293, DOI 10.1007/BF02761039
- Emmanuel Breuillard, Ben Green, and Terence Tao, The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 115–221. MR 3090256, DOI 10.1007/s10240-012-0043-9
- Julian Buck, Smallness and comparison properties for minimal dynamical systems, preprint (2013), arXiv:1306.6681.
- David Burguet, $\scr C^2$ surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), no. 1, 191–236. MR 2836054, DOI 10.1007/s00222-011-0317-8
- David Burguet and Tomasz Downarowicz, Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits, J. Dynam. Differential Equations 31 (2019), no. 2, 815–852. MR 3951826, DOI 10.1007/s10884-018-9674-y
- Nhan-Phu Chung and Guohua Zhang, Weak expansiveness for actions of sofic groups, J. Funct. Anal. 268 (2015), no. 11, 3534–3565. MR 3336733, DOI 10.1016/j.jfa.2014.12.013
- Joachim Cuntz, Dimension functions on simple $C^*$-algebras, Math. Ann. 233 (1978), no. 2, 145–153. MR 467332, DOI 10.1007/BF01421922
- Alexandre I. Danilenko and Kyewon K. Park, Generators and Bernoullian factors for amenable actions and cocycles on their orbits, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1715–1745. MR 1944401, DOI 10.1017/S014338570200072X
- Dou Dou, Minimal subshifts of arbitrary mean topological dimension, Discrete Contin. Dyn. Syst. 37 (2017), no. 3, 1411–1424. MR 3640558, DOI 10.3934/dcds.2017058
- Tomasz Downarowicz, Entropy structure, J. Anal. Math. 96 (2005), 57–116. MR 2177182, DOI 10.1007/BF02787825
- Tomasz Downarowicz, Entropy in dynamical systems, New Mathematical Monographs, vol. 18, Cambridge University Press, Cambridge, 2011. MR 2809170, DOI 10.1017/CBO9780511976155
- Tomasz Downarowicz, Bartosz Frej, and Pierre-Paul Romagnoli, Shearer’s inequality and infimum rule for Shannon entropy and topological entropy, Dynamics and numbers, Contemp. Math., vol. 669, Amer. Math. Soc., Providence, RI, 2016, pp. 63–75. MR 3546663, DOI 10.1090/conm/669/13423
- Tomasz Downarowicz and Dawid Huczek, Dynamical quasitilings of amenable groups, Bull. Pol. Acad. Sci. Math. 66 (2018), no. 1, 45–55. MR 3782587, DOI 10.4064/ba8128-1-2018
- Tomasz Downarowicz, Dawid Huczek, and Guohua Zhang, Tilings of amenable groups, J. Reine Angew. Math. 747 (2019), 277–298. MR 3905135, DOI 10.1515/crelle-2016-0025
- Tomasz Downarowicz and Alejandro Maass, Smooth interval maps have symbolic extensions: the antarctic theorem, Invent. Math. 176 (2009), no. 3, 617–636. MR 2501298, DOI 10.1007/s00222-008-0172-4
- Tomasz Downarowicz and Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), no. 3, 453–499. MR 2178700, DOI 10.1007/s00222-004-0413-0
- Erling Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243–254. MR 79220, DOI 10.7146/math.scand.a-10442
- Bartosz Frej and Dawid Huczek, Minimal models for actions of amenable groups, Groups Geom. Dyn. 11 (2017), no. 2, 567–583. MR 3668052, DOI 10.4171/GGD/408
- Bartosz Frej and Dawid Huczek, Faces of simplices of invariant measures for actions of amenable groups, Monatsh. Math. 185 (2018), no. 1, 61–80. MR 3745701, DOI 10.1007/s00605-017-1116-0
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math. 469 (1995), 51–111. MR 1363826
- Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320. MR 1710743, DOI 10.1007/BF02810689
- E. Glasner, J.-P. Thouvenot, and B. Weiss, Entropy theory without a past, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1355–1370. MR 1786718, DOI 10.1017/S0143385700000730
- Eli Glasner and Benjamin Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), no. 4, 559–579. MR 1339645, DOI 10.1142/S0129167X95000213
- R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985 (Russian). MR 764305
- Yonatan Gutman, Embedding $\Bbb Z^k$-actions in cubical shifts and $\Bbb Z^k$-symbolic extensions, Ergodic Theory Dynam. Systems 31 (2011), no. 2, 383–403. MR 2776381, DOI 10.1017/S0143385709001096
- Yonatan Gutman, Mean dimension and Jaworski-type theorems, Proc. Lond. Math. Soc. (3) 111 (2015), no. 4, 831–850. MR 3407186, DOI 10.1112/plms/pdv043
- Yonatan Gutman, Yixiao Qiao, and Masaki Tsukamoto, Application of signal analysis to the embedding problem of $\Bbb Z^k$-actions, Geom. Funct. Anal. 29 (2019), no. 5, 1440–1502. MR 4025517, DOI 10.1007/s00039-019-00499-z
- Yonatan Gutman and Masaki Tsukamoto, Embedding minimal dynamical systems into Hilbert cubes, Invent. Math. 221 (2020), no. 1, 113–166. MR 4105086, DOI 10.1007/s00222-019-00942-w
- Philip Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26–30.
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Wen Huang, Xiangdong Ye, and Guohua Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal. 261 (2011), no. 4, 1028–1082. MR 2803841, DOI 10.1016/j.jfa.2011.04.014
- Dawid Huczek, Zero-dimensional extensions of amenable group actions, Studia Math. 256 (2021), no. 2, 121–145. MR 4165507, DOI 10.4064/sm190203-5-11
- David Kerr, Dimension, comparison, and almost finiteness, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 11, 3697–3745. MR 4167017, DOI 10.4171/jems/995
- David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501–558. MR 2854085, DOI 10.1007/s00222-011-0324-9
- Wolfgang Krieger, On entropy and generators of measure-preserving transformations, Trans. Amer. Math. Soc. 149 (1970), 453–464. MR 259068, DOI 10.1090/S0002-9947-1970-0259068-3
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 82–90. MR 1696824, DOI 10.1090/S1079-6762-99-00065-7
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295. MR 1865397, DOI 10.1007/s002220100162
- W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305–316. MR 241525, DOI 10.1090/S0002-9904-1969-12149-X
- MichałMisiurewicz, Topological conditional entropy, Studia Math. 55 (1976), no. 2, 175–200. MR 415587, DOI 10.4064/sm-55-2-175-200
- Jean Moulin Ollagnier and Didier Pinchon, The variational principle, Studia Math. 72 (1982), no. 2, 151–159. MR 665415, DOI 10.4064/sm-72-2-151-159
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- Maxence Phalempin, Representation of congruent sequences of tilings on amenable groups, Internship Report (unpublished), University of Rennes, 2016.
- Mikael Rørdam, On the structure of simple $C^*$-algebras tensored with a UHF-algebra. II, J. Funct. Anal. 107 (1992), no. 2, 255–269. MR 1172023, DOI 10.1016/0022-1236(92)90106-S
- Mikael Rørdam, The stable and the real rank of $\scr Z$-absorbing $C^*$-algebras, Internat. J. Math. 15 (2004), no. 10, 1065–1084. MR 2106263, DOI 10.1142/S0129167X04002661
- A. Rosenthal, Finite uniform generators for ergodic, finite entropy, free actions of amenable groups, Probab. Theory Related Fields 77 (1988), no. 2, 147–166. MR 927234, DOI 10.1007/BF00334034
- Jacek Serafin, A faithful symbolic extension, Commun. Pure Appl. Anal. 11 (2012), no. 3, 1051–1062. MR 2968608, DOI 10.3934/cpaa.2012.11.1051
- Brandon Seward, Krieger’s finite generator theorem for actions of countable groups I, Invent. Math. 215 (2019), no. 1, 265–310. MR 3904452, DOI 10.1007/s00222-018-0826-9
- Konstantin Slutsky, Lecture notes on topological full groups of Cantor minimal systems, http://homepages.math.uic.edu/kslutsky/papers/Topological–full–groups.pdf.
- A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), no. 3, 545–549 (Russian). MR 590147
- Yuhei Suzuki, Almost finiteness for general étale groupoids and its applications to stable rank of crossed products, Int. Math. Res. Not. IMRN 19 (2020), 6007–6041. MR 4165470, DOI 10.1093/imrn/rny187
- Gábor Szabó, Private communication, 2017.
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220. MR 159923, DOI 10.1090/S0002-9947-1963-0159923-5
- John von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73–116.
- Štefan Šujan, Generators for amenable group actions, Monatsh. Math. 95 (1983), no. 1, 67–79. MR 697350, DOI 10.1007/BF01301149
- Thomas Ward and Qing Zhang, The Abramov-Rokhlin entropy addition formula for amenable group actions, Monatsh. Math. 114 (1992), no. 3-4, 317–329. MR 1203977, DOI 10.1007/BF01299386
- Benjamin Weiss, Monotileable amenable groups, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 257–262. MR 1819193, DOI 10.1090/trans2/202/18
- Wilhelm Winter, Decomposition rank and $\scr Z$-stability, Invent. Math. 179 (2010), no. 2, 229–301. MR 2570118, DOI 10.1007/s00222-009-0216-4
- Ruifeng Zhang, Topological pressure of generic points for amenable group actions, J. Dynam. Differential Equations 30 (2018), no. 4, 1583–1606. MR 3871614, DOI 10.1007/s10884-017-9610-6
- Dongmei Zheng, Ercai Chen, and Jiahong Yang, On large deviations for amenable group actions, Discrete Contin. Dyn. Syst. 36 (2016), no. 12, 7191–7206. MR 3567838, DOI 10.3934/dcds.2016113