
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Second Moment Theory of Families of $L$-Functions–The Case of Twisted Hecke $L$-Functions
About this Title
Valentin Blomer, Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, Djordje Milićević and Will Sawin
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 282, Number 1394
ISBNs: 978-1-4704-5678-8 (print); 978-1-4704-7350-1 (online)
DOI: https://doi.org/10.1090/memo/1394
Published electronically: January 3, 2023
Keywords: $L$-functions,
modular forms,
special values of $L$-functions,
moments,
mollification,
analytic rank,
shifted convolution sums,
root number,
Kloosterman sums,
resonator method
Table of Contents
Chapters
- 1. The second moment theory of families of $L$-functions
- 2. Preliminaries
- 3. Algebraic exponential sums
- 4. Computation of the first twisted moment
- 5. Computation of the second twisted moment
- 6. Non-vanishing at the central point
- 7. Extreme values of twisted $L$-functions
- 8. Upper bounds for the analytic rank
- 9. A conjecture of Mazur-Rubin concerning modular symbols
- Notation index
Abstract
For a fairly general family of $L$-functions, we survey the known consequences of the existence of asymptotic formulas with power-saving error term for the (twisted) first and second moments of the central values in the family.
We then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime $q$, and prove that it satisfies such formulas. We derive arithmetic consequences:
- Christoph Aistleitner and Łukasz Pańkowski, Large values of L-functions from the Selberg class, J. Math. Anal. Appl. 446 (2017), no. 1, 345–364. MR 3554732, DOI 10.1016/j.jmaa.2016.08.044
- B. Bagchi, Statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series, Indian Statistical Institute, Kolkata, 1981, http://library.isical.ac.in:8080/jspui/bitstream/10263/4256/1/TH47.CV01.pdf. PhD thesis.
- Valentin Blomer, Shifted convolution sums and subconvexity bounds for automorphic $L$-functions, Int. Math. Res. Not. 73 (2004), 3905–3926. MR 2104288, DOI 10.1155/S1073792804142505
- Valentin Blomer, Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Djordje Milićević, On moments of twisted $L$-functions, Amer. J. Math. 139 (2017), no. 3, 707–768. MR 3650231, DOI 10.1353/ajm.2017.0019
- Valentin Blomer and Gergely Harcos, Hybrid bounds for twisted $L$-functions, J. Reine Angew. Math. 621 (2008), 53–79. MR 2431250, DOI 10.1515/CRELLE.2008.058
- Valentin Blomer and Djordje Milićević, The second moment of twisted modular $L$-functions, Geom. Funct. Anal. 25 (2015), no. 2, 453–516. MR 3334233, DOI 10.1007/s00039-015-0318-7
- D. A. Burgess, On character sums and $L$-series, Proc. London Math. Soc. (3) 12 (1962), 193–206. MR 132733, DOI 10.1112/plms/s3-12.1.193
- C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory 65 (1997), no. 2, 183–196. MR 1462836, DOI 10.1006/jnth.1997.2142
- V. A. Bykovskiĭ, A trace formula for the scalar product of Hecke series and its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 (1996), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 13, 14–36, 235–236 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 89 (1998), no. 1, 915–932. MR 1433344, DOI 10.1007/BF02358528
- Gautam Chinta, Analytic ranks of elliptic curves over cyclotomic fields, J. Reine Angew. Math. 544 (2002), 13–24. MR 1887886, DOI 10.1515/crll.2002.021
- J. Coates and C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math. 375/376 (1987), 104–156. MR 882294, DOI 10.1515/crll.1987.375-376.104
- J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Integral moments of $L$-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104. MR 2149530, DOI 10.1112/S0024611504015175
- J. B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet $L$-functions, Invent. Math. 150 (2002), no. 1, 1–44. MR 1930880, DOI 10.1007/s00222-002-0227-x
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic $L$-functions, Invent. Math. 112 (1993), no. 1, 1–8. MR 1207474, DOI 10.1007/BF01232422
- Étienne Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math. 357 (1985), 51–76 (French). MR 783533, DOI 10.1515/crll.1985.357.51
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Algebraic trace functions over the primes, Duke Math. J. 163 (2014), no. 9, 1683–1736. MR 3217765, DOI 10.1215/00127094-2690587
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Trace functions over finite fields and their applications, Colloquium De Giorgi 2013 and 2014, Colloquia, vol. 5, Ed. Norm., Pisa, 2014, pp. 7–35. MR 3379177
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal. 25 (2015), no. 2, 580–657. MR 3334236, DOI 10.1007/s00039-015-0310-2
- Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel, On the exponent of distribution of the ternary divisor function, Mathematika 61 (2015), no. 1, 121–144. MR 3333965, DOI 10.1112/S0025579314000096
- Javier Fresán, Équirépartition de Sommes exponentielles [travaux de Katz], Astérisque 414, Séminaire Bourbaki. Vol. 2017/2018. Exposés 1136–1150 (2019), Exp. No. 1141, 205–250 (French). MR 4093200, DOI 10.24033/ast.1085
- Peng Gao, Rizwanur Khan, and Guillaume Ricotta, The second moment of Dirichlet twists of Hecke $L$-functions, Acta Arith. 140 (2009), no. 1, 57–65. MR 2557853, DOI 10.4064/aa140-1-4
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1975. MR 379375
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- Daniel A. Goldston, János Pintz, and Cem Y. Yıldırım, Primes in tuples. I, Ann. of Math. (2) 170 (2009), no. 2, 819–862. MR 2552109, DOI 10.4007/annals.2009.170.819
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Gergely Harcos and Philippe Michel, The subconvexity problem for Rankin-Selberg $L$-functions and equidistribution of Heegner points. II, Invent. Math. 163 (2006), no. 3, 581–655. MR 2207235, DOI 10.1007/s00222-005-0468-6
- A.J. Harper, Sharp conditional bounds for moments of the Riemann zeta function, Preprint (2013). arXiv:1305.4618.
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- D. R. Heath-Brown and P. Michel, Exponential decay in the frequency of analytic ranks of automorphic $L$-functions, Duke Math. J. 102 (2000), no. 3, 475–484. MR 1756106, DOI 10.1215/S0012-7094-00-10235-9
- Guy Henniart, Correspondance de Langlands et fonctions $L$ des carrés extérieur et symétrique, Int. Math. Res. Not. IMRN 4 (2010), 633–673 (French). MR 2595008, DOI 10.1093/imrn/rnp150
- J. Hoffstein and M. Lee, Second moments and simultaneous non-vanishing of $\GL (2)$ automorphic $L$-series, Preprint (2013). arXiv:1308.5980.
- Bob Hough, The angle of large values of $L$-functions, J. Number Theory 167 (2016), 353–393. MR 3504052, DOI 10.1016/j.jnt.2016.03.008
- Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964, DOI 10.1090/gsm/017
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Iwaniec and P. Sarnak, Dirichlet $L$-functions at the central point, Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997) de Gruyter, Berlin, 1999, pp. 941–952. MR 1689553
- H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $L$-functions, Geom. Funct. Anal. Special Volume (2000), 705–741. GAFA 2000 (Tel Aviv, 1999). MR 1826269, DOI 10.1007/978-3-0346-0425-3_{6}
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Nicholas M. Katz, Convolution and equidistribution, Annals of Mathematics Studies, vol. 180, Princeton University Press, Princeton, NJ, 2012. Sato-Tate theorems for finite-field Mellin transforms. MR 2850079
- Nicholas M. Katz and Peter Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 1, 1–26. MR 1640151, DOI 10.1090/S0273-0979-99-00766-1
- J. P. Keating and N. C. Snaith, Random matrix theory and $\zeta (1/2+it)$, Comm. Math. Phys. 214 (2000), no. 1, 57–89. MR 1794265, DOI 10.1007/s002200000261
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177–197. MR 1890650, DOI 10.1215/S0012-9074-02-11215-0
- Hae-Sang Sun, Generation of cyclotomic Hecke fields by modular $L$-values with cyclotomic twists, Amer. J. Math. 141 (2019), no. 4, 907–940. MR 3992569, DOI 10.1353/ajm.2019.0024
- E. Kowalski, Families of cusp forms, Actes de la Conférence “Théorie des Nombres et Applications”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2013, Presses Univ. Franche-Comté, Besançon, 2013, pp. 5–40. MR 3220018
- E. Kowalski, Bagchi’s theorem for families of automorphic forms, Exploring the Riemann zeta function, Springer, Cham, 2017, pp. 181–199. MR 3700042
- E. Kowalski and P. Michel, The analytic rank of $J_0(q)$ and zeros of automorphic $L$-functions, Duke Math. J. 100 (1999), no. 3, 503–542. MR 1719730, DOI 10.1215/S0012-7094-99-10017-2
- E. Kowalski, P. Michel, and J. VanderKam, Non-vanishing of high derivatives of automorphic $L$-functions at the center of the critical strip, J. Reine Angew. Math. 526 (2000), 1–34. MR 1778299, DOI 10.1515/crll.2000.074
- E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg $L$-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123–191. MR 1915038, DOI 10.1215/S0012-7094-02-11416-1
- Emmanuel Kowalski, Philippe Michel, and Will Sawin, Bilinear forms with Kloosterman sums and applications, Ann. of Math. (2) 186 (2017), no. 2, 413–500. MR 3702671, DOI 10.4007/annals.2017.186.2.2
- E. Kowalski and A. Nikeghbali, Mod-Gaussian convergence and the value distribution of $\zeta (\frac 12+it)$ and related quantities, J. Lond. Math. Soc. (2) 86 (2012), no. 1, 291–319. MR 2959306, DOI 10.1112/jlms/jds003
- Wen Ch’ing Winnie Li, $L$-series of Rankin type and their functional equations, Math. Ann. 244 (1979), no. 2, 135–166. MR 550843, DOI 10.1007/BF01420487
- Jianya Liu and Yangbo Ye, Perron’s formula and the prime number theorem for automorphic $L$-functions, Pure Appl. Math. Q. 3 (2007), no. 2, Special Issue: In honor of Leon Simon., 481–497. MR 2340051, DOI 10.4310/PAMQ.2007.v3.n2.a4
- Guangshi Lü, The sixth and eighth moments of Fourier coefficients of cusp forms, J. Number Theory 129 (2009), no. 11, 2790–2800. MR 2549533, DOI 10.1016/j.jnt.2009.01.019
- Jasmin Matz, Distribution of Hecke eigenvalues for $\textrm {GL}(n)$, Families of automorphic forms and the trace formula, Simons Symp., Springer, [Cham], 2016, pp. 327–350. MR 3675171
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- Jean-François Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), no. 2, 209–232 (French). MR 844410
- Toshitsune Miyake, Modular forms, Reprint of the first 1989 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
- Carlos J. Moreno, Analytic proof of the strong multiplicity one theorem, Amer. J. Math. 107 (1985), no. 1, 163–206. MR 778093, DOI 10.2307/2374461
- Y. Petridis and M. Risager, Arithmetic statistics of modular symbols, Invent. math. 212 (2018), no. 3, 1–57.
- Robert Pollack, Overconvergent modular symbols, Computations with modular forms, Contrib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 69–105. MR 3381449, DOI 10.1007/978-3-319-03847-6_{3}
- Maksym Radziwiłł and K. Soundararajan, Moments and distribution of central $L$-values of quadratic twists of elliptic curves, Invent. Math. 202 (2015), no. 3, 1029–1068. MR 3425386, DOI 10.1007/s00222-015-0582-z
- Maksym Radziwiłł and Kannan Soundararajan, Selberg’s central limit theorem for $\log {|\zeta (1/2+it)|}$, Enseign. Math. 63 (2017), no. 1-2, 1–19. MR 3832861, DOI 10.4171/LEM/63-1/2-1
- M. \maks and K. Soundararajan, Value distribution of $L$-functions, Oberwolfach report 40/2017.
- Dinakar Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$, Ann. of Math. (2) 152 (2000), no. 1, 45–111. MR 1792292, DOI 10.2307/2661379
- Dinakar Ramakrishnan, Recovering cusp forms on $\rm GL(2)$ from symmetric cubes, SCHOLAR—a scientific celebration highlighting open lines of arithmetic research, Contemp. Math., vol. 655, Amer. Math. Soc., Providence, RI, 2015, pp. 181–189. MR 3453120, DOI 10.1090/conm/655/13205
- G. Ricotta, Real zeros and size of Rankin-Selberg $L$-functions in the level aspect, Duke Math. J. 131 (2006), no. 2, 291–350. MR 2219243, DOI 10.1215/S0012-7094-06-13124-1
- Zeév Rudnick and Peter Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269–322. A celebration of John F. Nash, Jr. MR 1395406, DOI 10.1215/S0012-7094-96-08115-6
- Z. Rudnick and K. Soundararajan, Lower bounds for moments of $L$-functions, Proc. Natl. Acad. Sci. USA 102 (2005), no. 19, 6837–6838. MR 2144738, DOI 10.1073/pnas.0501723102
- Peter Sarnak, Nonvanishing of $L$-functions on $\mathfrak {R}(s)=1$, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 719–732. MR 2058625
- Peter Sarnak, Sug Woo Shin, and Nicolas Templier, Families of $L$-functions and their symmetry, Families of automorphic forms and the trace formula, Simons Symp., Springer, [Cham], 2016, pp. 531–578. MR 3675175
- W. Sawin, A. Forey, J. Fresán, and E. Kowalski, Quantitative sheaf theory. To appear in J. Amer. Math. Soc.
- Atle Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid.-Akad. Oslo I 1942 (1942), no. 10, 59. MR 10712
- Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
- Sug Woo Shin and Nicolas Templier, Sato-Tate theorem for families and low-lying zeros of automorphic $L$-functions, Invent. Math. 203 (2016), no. 1, 1–177. Appendix A by Robert Kottwitz, and Appendix B by Raf Cluckers, Julia Gordon and Immanuel Halupczok. MR 3437869, DOI 10.1007/s00222-015-0583-y
- Kannan Soundararajan, Moments of the Riemann zeta function, Ann. of Math. (2) 170 (2009), no. 2, 981–993. MR 2552116, DOI 10.4007/annals.2009.170.981
- K. Soundararajan, Extreme values of zeta and $L$-functions, Math. Ann. 342 (2008), no. 2, 467–486. MR 2425151, DOI 10.1007/s00208-008-0243-2
- Tomasz Stefanicki, Non-vanishing of $L$-functions attached to automorphic representations of $\textrm {GL}(2)$ over $\textbf {Q}$, J. Reine Angew. Math. 474 (1996), 1–24. MR 1390690, DOI 10.1515/crll.1996.474.1
- S. M. Voronin, A theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 475–486, 703 (Russian). MR 472727
- Ping Xi, Large sieve inequalities for algebraic trace functions, Int. Math. Res. Not. IMRN 16 (2017), 4840–4881. With an appendix by Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel. MR 3687118, DOI 10.1093/imrn/rnw074
- Matthew P. Young, The fourth moment of Dirichlet $L$-functions, Ann. of Math. (2) 173 (2011), no. 1, 1–50. MR 2753598, DOI 10.4007/annals.2011.173.1.1
- Raphaël Zacharias, Mollification of the fourth moment of Dirichlet $L$-functions, Acta Arith. 191 (2019), no. 3, 201–257. MR 4017531, DOI 10.4064/aa170901-16-10
- Raphaël Zacharias, Simultaneous non-vanishing for Dirichlet $L$-functions, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 4, 1459–1524 (English, with English and French summaries). MR 4010863
We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.