
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Inflectionary Invariants for Isolated Complete Intersection Curve Singularities
About this Title
Anand P. Patel and Ashvin A. Swaminathan
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 282, Number 1397
ISBNs: 978-1-4704-6157-7 (print); 978-1-4704-7353-2 (online)
DOI: https://doi.org/10.1090/memo/1397
Published electronically: January 3, 2022
Keywords: Deformations of curve singularities,
inflection points,
sheaves of principal parts,
linear systems,
ramification theory,
Weierstrass points,
determinantal varieties,
intersection theory
Table of Contents
Chapters
- Acknowledgments
- 1. Introduction
- 2. Background Material
- 3. Defining Automatic Degeneracy
- 4. Automatic Degeneracies of a Node
- 5. Automatic Degeneracies of Higher-Order Singularities
- 6. Examples of Computing Automatic Degeneracies
- 7. Other Enumerative Applications
- A. Summary of Open Problems
Abstract
We investigate the role played by curve singularity germs in the enumeration of inflection points in families of curves acquiring singular members. Let $N \geq 2$, and consider an isolated complete intersection curve singularity germ $f \colon (\mathbb {C}^N,0) \to (\mathbb {C}^{N-1},0)$. We define a numerical function $m \mapsto \operatorname {AD}_{(2)}^m(f)$ that naturally arises when counting $m^{\mathrm {th}}$-order weight-$2$ inflection points with ramification sequence $(0, \dots , 0, 2)$ in a $1$-parameter family of curves acquiring the singularity $f = 0$, and we compute $\operatorname {AD}_{(2)}^m(f)$ for several interesting families of pairs $(f,m)$. In particular, for a node defined by $f \colon (x,y) \mapsto xy$, we prove that $\operatorname {AD}_{(2)}^m(xy) = {{m+1} \choose 4},$ and we deduce as a corollary that $\operatorname {AD}_{(2)}^m(f) \geq (\operatorname {mult}_0 \Delta _f) \cdot {{m+1} \choose 4}$ for any $f$, where $\operatorname {mult}_0 \Delta _f$ is the multiplicity of the discriminant $\Delta _f$ at the origin in the deformation space. Significantly, we prove that the function $m \mapsto \operatorname {AD}_{(2)}^m(f) -(\operatorname {mult}_0 \Delta _f) \cdot {{m+1} \choose 4}$ is an analytic invariant measuring how much the singularity âcounts asâ an inflection point. We prove similar results for weight-$2$ inflection points with ramification sequence $(0, \dots , 0, 1,1)$ and for weight-$1$ inflection points, and we apply our results to solve a number of related enumerative problems.- E. Ballico and L. Gatto, Weierstrass points on singular curves, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), no. 2, 145â170 (1998). MR 1680491
- Thomas Bleier, Excess Porteous, coherent Porteous, and the hyperelliptic locus in $\overline {\mathfrak {M}}_3$, Michigan Math. J. 61 (2012), no. 2, 359â383. MR 2944484, DOI 10.1307/mmj/1339011531
- C. BiviĂ Ausina and J. J. Nuño Ballesteros, Multiplicity of iterated Jacobian extensions of weighted homogeneous map germs, Hokkaido Math. J. 29 (2000), no. 2, 341â368. MR 1776713, DOI 10.14492/hokmj/1350912976
- David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197â224. MR 159860, DOI 10.1090/S0002-9947-1964-0159860-7
- Joseph Brennan, Bernd Ulrich, and Wolmer V. Vasconcelos, The Buchsbaum-Rim polynomial of a module, J. Algebra 241 (2001), no. 1, 379â392. MR 1838857, DOI 10.1006/jabr.2001.8764
- Sabin Cautis, Extending families of curves: Monodromy and applications, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)âHarvard University. MR 2708742
- A. Cayley, On the Higher Singularities of a Plane Curve, Quarterly Journal VII (1866), 212â222.
- Arthur Cayley, The collected mathematical papers. Volume 5, Cambridge Library Collection, Cambridge University Press, Cambridge, 2009. Reprint of the 1892 original. MR 2866760
- C. Cumino, E. Esteves, and L. Gatto, Limits of special Weierstrass points, Int. Math. Res. Pap. IMRP 2 (2008), Art. ID rpn001, 65. MR 2431731
- Fernando Cukierman and Lung-Ying Fong, On higher Weierstrass points, Duke Math. J. 62 (1991), no. 1, 179â203. MR 1104328, DOI 10.1215/S0012-7094-91-06208-3
- C.-Y. Jean Chan, Jung-Chen Liu, and Bernd Ulrich, Buchsbaum-Rim multiplicities as Hilbert-Samuel multiplicities, J. Algebra 319 (2008), no. 11, 4413â4425. MR 2416728, DOI 10.1016/j.jalgebra.2007.12.025
- Fernando Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), no. 2, 317â346. MR 1016424, DOI 10.1215/S0012-7094-89-05815-8
- James Damon, A Bezout theorem for determinantal modules, Compositio Math. 98 (1995), no. 2, 117â139. MR 1354264
- Steven Diaz and Joe Harris, Geometry of the Severi variety, Trans. Amer. Math. Soc. 309 (1988), no. 1, 1â34. MR 957060, DOI 10.1090/S0002-9947-1988-0957060-8
- Steven Diaz, Exceptional Weierstrass points and the divisor on moduli space that they define, Mem. Amer. Math. Soc. 56 (1985), no. 327, iv+69. MR 791679, DOI 10.1090/memo/0327
- David Eisenbud and Joe Harris, 3264 and all thatâa second course in algebraic geometry, Cambridge University Press, Cambridge, 2016. MR 3617981, DOI 10.1017/CBO9781139062046
- Eduardo Esteves and Parham Salehyan, Limit Weierstrass points on nodal reducible curves, Trans. Amer. Math. Soc. 359 (2007), no. 10, 5035â5056. MR 2320659, DOI 10.1090/S0002-9947-07-04193-1
- E. Esteves, Wronski algebra systems on families of singular curves, Ann. Sci. Ăcole Norm. Sup. (4) 29 (1996), no. 1, 107â134. MR 1368706
- Eduardo Esteves, The stable hyperelliptic locus in genus 3: an application of Porteous formula, J. Pure Appl. Algebra 220 (2016), no. 2, 845â856. MR 3399393, DOI 10.1016/j.jpaa.2015.07.020
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Terence Gaffney, Integral closure of modules and Whitney equisingularity, Invent. Math. 107 (1992), no. 2, 301â322. MR 1144426, DOI 10.1007/BF01231892
- Terence Gaffney, Multiplicities and equisingularity of ICIS germs, Invent. Math. 123 (1996), no. 2, 209â220. MR 1374196, DOI 10.1007/s002220050022
- Letterio Gatto, Weight sequences versus gap sequences at singular points of Gorenstein curves, Geom. Dedicata 54 (1995), no. 3, 267â300. MR 1326732, DOI 10.1007/BF01265343
- Terence Gaffney and Steven L. Kleiman, Specialization of integral dependence for modules, Invent. Math. 137 (1999), no. 3, 541â574. MR 1709870, DOI 10.1007/s002220050335
- Terence Gaffney and David Massey, Trends in equisingularity theory, Singularity theory (Liverpool, 1996) London Math. Soc. Lecture Note Ser., vol. 263, Cambridge Univ. Press, Cambridge, 1999, pp. xixâxx, 207â248. MR 1709355
- Letterio Gatto and Andrea T. Ricolfi, Jet bundles on Gorenstein curves and applications, J. Singul. 21 (2020), 50â83. MR 4084200, DOI 10.5427/jsing.2020.21d
- G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter SingularitĂ€ten von vollstĂ€ndigen Durchschnitten, Math. Ann. 214 (1975), 235â266. MR 396554, DOI 10.1007/BF01352108
- A. Grothendieck, ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas IV, Inst. Hautes Ătudes Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121â176. MR 597077, DOI 10.1007/BF01467074
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- SĂ©minaire Henri Cartan, 13iĂšme annĂ©e: 1960/61. Familles dâespaces complexes et fondements de la gĂ©omĂ©trie analytique. Fasc. 1 et 2: Exp. 1â21, SecrĂ©tariat MathĂ©matique, Ăcole Normale SupĂ©rieure, Paris, 1962 (French). 2iĂšme Ă©dition, corrigĂ©e. MR 146036
- Vijay Kodiyalam and Radha Mohan, Lengths and multiplicities of integrally closed modules over a two-dimensional regular local ring, J. Algebra 425 (2015), 392â409. MR 3295990, DOI 10.1016/j.jalgebra.2014.12.008
- Vijay Kodiyalam, Integrally closed modules over two-dimensional regular local rings, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3551â3573. MR 1308016, DOI 10.1090/S0002-9947-1995-1308016-0
- R. F. Lax, On the distribution of Weierstrass points on singular curves, Israel J. Math. 57 (1987), no. 1, 107â115. MR 882250, DOI 10.1007/BF02769464
- Hwayoung Lee, A note on the Hilbert scheme of points on a cusp curve, Internat. J. Algebra Comput. 22 (2012), no. 3, 1250025, 9. MR 2922387, DOI 10.1142/S0218196712500257
- D. LĂȘ TrĂĄng, Calculation of Milnor number of isolated singularity of complete intersection, Funct. Anal. Its Appl. 8 (1974), no. 2, 127â131.
- Dan Laksov and Anders Thorup, Weierstrass points and gap sequences for families of curves, Ark. Mat. 32 (1994), no. 2, 393â422. MR 1318539, DOI 10.1007/BF02559578
- Dan Laksov and Anders Thorup, The algebra of jets, Michigan Math. J. 48 (2000), 393â416. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786498, DOI 10.1307/mmj/1030132726
- Dan Laksov and Anders Thorup, Wronski systems for families of local complete intersection curves, Comm. Algebra 31 (2003), no. 8, 4007â4035. Special issue in honor of Steven L. Kleiman. MR 2007394, DOI 10.1081/AGB-120022452
- R. F. Lax and Carl Widland, Weierstrass points on rational nodal curves of genus $3$, Canad. Math. Bull. 30 (1987), no. 3, 286â294. MR 906350, DOI 10.4153/CMB-1987-041-7
- R. F. Lax and Carl Widland, Weierstrass points on rational cuspidal curves, Boll. Un. Mat. Ital. A (7) 2 (1988), no. 1, 65â71 (English, with Italian summary). MR 931645
- Carl Widland and Robert Lax, Weierstrass points on Gorenstein curves, Pacific J. Math. 142 (1990), no. 1, 197â208. MR 1038736
- Carl Widland and Robert Lax, Weierstrass points on Gorenstein curves, Pacific J. Math. 142 (1990), no. 1, 197â208. MR 1038736
- R. F. Lax and Carl Widland, Gap sequences at a singularity, Pacific J. Math. 150 (1991), no. 1, 111â122. MR 1120715
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
- A. Maugesten and T. Moe, The 2-Hessian and sextactic points on plane algebraic curves.
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, BirkhĂ€user Boston, Boston, MA, 1983, pp. 271â328. MR 717614
- Ziv Ran, Cycle map on Hilbert schemes of nodal curves, Projective varieties with unexpected properties, Walter de Gruyter, Berlin, 2005, pp. 361â378. MR 2202264
- Ziv Ran, Geometry on nodal curves, Compos. Math. 141 (2005), no. 5, 1191â1212. MR 2157135, DOI 10.1112/S0010437X05001466
- Ziv Ran, A note on Hilbert schemes of nodal curves, J. Algebra 292 (2005), no. 2, 429â446. MR 2172162, DOI 10.1016/j.jalgebra.2005.06.028
- Ziv Ran, Tautological module and intersection theory on Hilbert schemes of nodal curves, Asian J. Math. 17 (2013), no. 2, 193â263. MR 3078931, DOI 10.4310/AJM.2013.v17.n2.a1
- Charlotte Angas Scott, On the Higher Singularities of Plane Curves, Amer. J. Math. 14 (1892), no. 4, 301â325. MR 1505600, DOI 10.2307/2369609
- A. Swaminathan, Inflection points in families of algebraic curves, Senior Thesis, Harvard College, 2017.
- B. Teissier, Sur diverse conditions numĂ©riques dâĂ©quisingularitĂ© des familles de courbes (et un principe de specialisation de la dĂ©pendance intĂ©grale), preprint, 1975.
- B. Teissier, VariĂ©tĂ©s polaires. I. Invariants polaires des singularitĂ©s dâhypersurfaces, Invent. Math. 40 (1977), no. 3, 267â292 (French). MR 470246, DOI 10.1007/BF01425742
- Carl Archer Widland, WEIERSTRASS POINTS ON GORENSTEIN CURVES, ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)âLouisiana State University and Agricultural & Mechanical College. MR 2634128