
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
On Singular Vortex Patches, I: Well-posedness Issues
About this Title
Tarek M. Elgindi and In-Jee Jeong
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 283, Number 1400
ISBNs: 978-1-4704-5682-5 (print); 978-1-4704-7401-0 (online)
DOI: https://doi.org/10.1090/memo/1400
Published electronically: January 20, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Background Material
- 3. Global well-posedness for symmetric patches in an intermediate space
- 4. Global well-posedness for symmetric $C^{1,\alpha }$-patches with corners
- 5. Ill-posedness results for vortex patches with corners
- 6. Effective system for the boundary evolution near the corner
- A. Appendix
Abstract
The purpose of this work is to discuss the well-posedness theory of singular vortex patches. Our main results are of two types: well-posedness and ill-posedness. On the well-posedness side, we show that globally $m$-fold symmetric vortex patches with corners emanating from the origin are globally well-posed in natural regularity classes as long as $m\geq 3.$ In this case, all of the angles involved solve a closed ODE system which dictates the global-in-time dynamics of the corners and only depends on the initial locations and sizes of the corners. Along the way we obtain a global well-posedness result for a class of symmetric patches with boundary singular at the origin, which includes logarithmic spirals. On the ill-posedness side, we show that any other type of corner singularity in a vortex patch cannot evolve continuously in time except possibly when all corners involved have precisely the angle $\frac {\pi }{2}$ for all time. Even in the case of vortex patches with corners of angle $\frac {\pi }{2}$ or with corners which are only locally $m$-fold symmetric, we prove that they are generically ill-posed. We expect that in these cases of ill-posedness, the vortex patches actually cusp immediately in a self-similar way and we derive some asymptotic models which may be useful in giving a more precise description of the dynamics. In a companion work from 2020 on singular vortex patches, we discuss the long-time behavior of symmetric vortex patches with corners and use them to construct patches on $\mathbb {R}^2$ with interesting dynamical behavior such as cusping and spiral formation in infinite time.- R. C. Alexander. Family of similarity flows with vortex sheets. The Physics of Fluids, 14(2):231–239, 1971.
- Serge Alinhac, Remarques sur l’instabilité du problème des poches de tourbillon, J. Funct. Anal. 98 (1991), no. 2, 361–379 (French, with English summary). MR 1111574, DOI 10.1016/0022-1236(91)90083-H
- David M. Ambrose, James P. Kelliher, Milton C. Lopes Filho, and Helena J. Nussenzveig Lopes, Serfati solutions to the 2D Euler equations on exterior domains, J. Differential Equations 259 (2015), no. 9, 4509–4560. MR 3373413, DOI 10.1016/j.jde.2015.06.001
- Andreas Axelsson and Alan McIntosh, Hodge decompositions on weakly Lipschitz domains, Advances in analysis and geometry, Trends Math., Birkhäuser, Basel, 2004, pp. 3–29. MR 2077077
- Diego Ayala and Bartosz Protas, Maximum palinstrophy growth in 2D incompressible flows, J. Fluid Mech. 742 (2014), 340–367. MR 3168897, DOI 10.1017/jfm.2013.685
- Diego Ayala and Bartosz Protas, Vortices, maximum growth and the problem of finite-time singularity formation, Fluid Dyn. Res. 46 (2014), no. 3, 031404, 14. MR 3224234, DOI 10.1088/0169-5983/46/3/031404
- Diego Ayala and Bartosz Protas, Extreme vortex states and the growth of enstrophy in three-dimensional incompressible flows, J. Fluid Mech. 818 (2017), 772–806. MR 3632597, DOI 10.1017/jfm.2017.136
- Hantaek Bae and James P. Kelliher. Propagation of striated regularity of velocity for the Euler equations. arXiv:1508.01915.
- Hantaek Bae and James P. Kelliher. The vortex patches of Serfati. arXiv:1409.5169.
- H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal. 127 (1994), no. 2, 159–181 (French, with French summary). MR 1288809, DOI 10.1007/BF00377659
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- D. Benedetto, C. Marchioro, and M. Pulvirenti, On the Euler flow in $\textbf {R}^2$, Arch. Rational Mech. Anal. 123 (1993), no. 4, 377–386. MR 1233643, DOI 10.1007/BF00375585
- Frédéric Bernicot and Taoufik Hmidi, On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ. 12 (2015), no. 2, 127–155. MR 3361245, DOI 10.4310/DPDE.2015.v12.n2.a3
- Frédéric Bernicot and Sahbi Keraani, On the global well-posedness of the 2D Euler equations for a large class of Yudovich type data, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 3, 559–576 (English, with English and French summaries). MR 3239099, DOI 10.24033/asens.2222
- A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), no. 1, 19–28. MR 1207667
- Andrea Louise Bertozzi, Existence, uniqueness, and a characterization of solutions to the contour dynamics equation, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–Princeton University. MR 2686124
- Jean Bourgain and Dong Li, Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces, Invent. Math. 201 (2015), no. 1, 97–157. MR 3359050, DOI 10.1007/s00222-014-0548-6
- Jean Bourgain and Dong Li, Strong illposedness of the incompressible Euler equation in integer $C^m$ spaces, Geom. Funct. Anal. 25 (2015), no. 1, 1–86. MR 3320889, DOI 10.1007/s00039-015-0311-1
- Jacob Burbea, Motions of vortex patches, Lett. Math. Phys. 6 (1982), no. 1, 1–16. MR 646163, DOI 10.1007/BF02281165
- T. F. Buttke. The observation of singularities in the boundary of patches of constant vorticity. Phys. Fluids A, 1:1283–1285, 1989.
- J. A. Carrillo and J. Soler, On the evolution of an angle in a vortex patch, J. Nonlinear Sci. 10 (2000), no. 1, 23–47. MR 1730570, DOI 10.1007/s003329910002
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, Duke Math. J. 165 (2016), no. 5, 935–984. MR 3482335, DOI 10.1215/00127094-3449673
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Uniformly rotating analytic global patch solutions for active scalars, Ann. PDE 2 (2016), no. 1, Art. 1, 34. MR 3462104, DOI 10.1007/s40818-016-0007-3
- J.-Y. Chemin, Persistance des structures géométriques liées aux poches de tourbillon, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytech., Palaiseau, 1991, pp. Exp. No. XIII, 11 (French). MR 1131586
- Jean-Yves Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 517–542 (French, with English and French summaries). MR 1235440
- Jean-Yves Chemin, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. MR 1688875
- Albert Cohen and Raphael Danchin, Multiscale approximation of vortex patches, SIAM J. Appl. Math. 60 (2000), no. 2, 477–502. MR 1740256, DOI 10.1137/S0036139997319785
- P. Constantin and E. S. Titi, On the evolution of nearly circular vortex patches, Comm. Math. Phys. 119 (1988), no. 2, 177–198. MR 968694
- Elaine Cozzi, Solutions to the 2D Euler equations with velocity unbounded at infinity, J. Math. Anal. Appl. 423 (2015), no. 1, 144–161. MR 3273173, DOI 10.1016/j.jmaa.2014.09.053
- Elaine Cozzi and James P. Kelliher, Well-posedness of the 2D Euler equations when velocity grows at infinity, Discrete Contin. Dyn. Syst. 39 (2019), no. 5, 2361–2392. MR 3927517, DOI 10.3934/dcds.2019100
- Bernard Dacorogna, Introduction to the calculus of variations, 3rd ed., Imperial College Press, London, 2015. MR 3288348
- Raphaël Danchin, Évolution temporelle d’une poche de tourbillon singulière, Comm. Partial Differential Equations 22 (1997), no. 5-6, 685–721 (French, with English summary). MR 1452164, DOI 10.1080/03605309708821280
- Raphaël Danchin, Évolution d’une singularité de type cusp dans une poche de tourbillon, Rev. Mat. Iberoamericana 16 (2000), no. 2, 281–329 (French, with English and French summaries). MR 1809342, DOI 10.4171/RMI/276
- Francisco de la Hoz, Zineb Hassainia, Taoufik Hmidi, and Joan Mateu, An analytical and numerical study of steady patches in the disc, Anal. PDE 9 (2016), no. 7, 1609–1670. MR 3570233, DOI 10.2140/apde.2016.9.1609
- G. S. Deem and N. J. Zabusky. Stationary "$v$-states," interactions, recurrence, and breaking. Phys. Rev. Lett., 40:859–862, 1978.
- Sergey A. Denisov, Double exponential growth of the vorticity gradient for the two-dimensional Euler equation, Proc. Amer. Math. Soc. 143 (2015), no. 3, 1199–1210. MR 3293735, DOI 10.1090/S0002-9939-2014-12286-6
- Sergey A. Denisov, The sharp corner formation in 2D Euler dynamics of patches: infinite double exponential rate of merging, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 675–705. MR 3294414, DOI 10.1007/s00205-014-0793-2
- Nicolas Depauw, Poche de tourbillon pour Euler 2D dans un ouvert à bord, J. Math. Pures Appl. (9) 78 (1999), no. 3, 313–351 (French, with English and French summaries). MR 1687165, DOI 10.1016/S0021-7824(98)00003-8
- D. G. Dritschel and M. E. McIntyre, Does contour dynamics go singular?, Phys. Fluids A 2 (1990), no. 5, 748–753. MR 1050012, DOI 10.1063/1.857728
- David G. Dritschel, Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics, J. Comput. Phys. 77 (1988), no. 1, 240–266. MR 954310, DOI 10.1016/0021-9991(88)90165-9
- David G. Dritschel and Lorenzo M. Polvani, The roll-up of vorticity strips on the surface of a sphere, J. Fluid Mech. 234 (1992), 47–69. MR 1147514, DOI 10.1017/S0022112092000697
- Tarek M. Elgindi. Propagation of Singularities for the 2d incompressible Euler equations. in preparation.
- Tarek M. Elgindi. Remarks on functions with bounded Laplacian. arXiv:1605.05266.
- Tarek M. Elgindi and In-Jee Jeong, On singular vortex patches, II: long-time dynamics, Trans. Amer. Math. Soc. 373 (2020), no. 9, 6757–6775. MR 4155190, DOI 10.1090/tran/8134
- Tarek M. Elgindi and In-Jee Jeong, Symmetries and critical phenomena in fluids, Comm. Pure Appl. Math. 73 (2020), no. 2, 257–316. MR 4054357, DOI 10.1002/cpa.21829
- Tarek Mohamed Elgindi and In-Jee Jeong, Ill-posedness for the incompressible Euler equations in critical Sobolev spaces, Ann. PDE 3 (2017), no. 1, Paper No. 7, 19. MR 3625192, DOI 10.1007/s40818-017-0027-7
- Tarek M. Elgindi and Nader Masmoudi, $L^\infty$ ill-posedness for a class of equations arising in hydrodynamics, Arch. Ration. Mech. Anal. 235 (2020), no. 3, 1979–2025. MR 4065655, DOI 10.1007/s00205-019-01457-7
- V. Elling and M. V. Gnann, Variety of unsymmetric multibranched logarithmic vortex spirals, European J. Appl. Math. 30 (2019), no. 1, 23–38. MR 3893255, DOI 10.1017/S0956792517000365
- Avner Friedman and Chao Cheng Huang, Averaged motion of charged particles under their self-induced electric field, Indiana Univ. Math. J. 43 (1994), no. 4, 1167–1225. MR 1322616, DOI 10.1512/iumj.1994.43.43052
- Avner Friedman and Juan J. L. Velázquez, A time-dependent free boundary problem modeling the visual image in electrophotography, Arch. Rational Mech. Anal. 123 (1993), no. 3, 259–303. MR 1225210, DOI 10.1007/BF00375128
- Zineb Hassainia, Nader Masmoudi, and Miles H. Wheeler, Global bifurcation of rotating vortex patches, Comm. Pure Appl. Math. 73 (2020), no. 9, 1933–1980. MR 4156612, DOI 10.1002/cpa.21855
- Taoufik Hmidi and Joan Mateu, Bifurcation of rotating patches from Kirchhoff vortices, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5401–5422. MR 3543554, DOI 10.3934/dcds.2016038
- Taoufik Hmidi and Joan Mateu, Degenerate bifurcation of the rotating patches, Adv. Math. 302 (2016), 799–850. MR 3545942, DOI 10.1016/j.aim.2016.07.022
- Taoufik Hmidi, Joan Mateu, and Joan Verdera, Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 171–208. MR 3054601, DOI 10.1007/s00205-013-0618-8
- David Hoff and Misha Perepelitsa, Instantaneous boundary tangency and cusp formation in two-dimensional fluid flow, SIAM J. Math. Anal. 41 (2009), no. 2, 753–780. MR 2515784, DOI 10.1137/080733164
- Chaocheng Huang, Singular integral system approach to regularity of 3D vortex patches, Indiana Univ. Math. J. 50 (2001), no. 1, 509–552. MR 1857044, DOI 10.1512/iumj.2001.50.1802
- D. Iftimie, M. C. Lopes Filho, and H. J. Nussenzveig Lopes, On the large-time behavior of two-dimensional vortex dynamics, Phys. D 179 (2003), no. 3-4, 153–160. MR 1984383, DOI 10.1016/S0167-2789(03)00028-9
- Dragoş Iftimie, Thomas C. Sideris, and Pascal Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations 24 (1999), no. 9-10, 1709–1730. MR 1708106, DOI 10.1080/03605309908821480
- In-Jee Jeong and Tsuyoshi Yoneda. Vortex stretching on the incompressible 3D Navier-Stokes equations. arXiv:2001.02333
- Yukio Kaneda, A family of analytical solutions of the motions of double-branched spiral vortex sheets, Phys. Fluids A 1 (1989), no. 2, 261–266. MR 1021630, DOI 10.1063/1.857441
- James P. Kelliher, A characterization at infinity of bounded vorticity, bounded velocity solutions to the 2D Euler equations, Indiana Univ. Math. J. 64 (2015), no. 6, 1643–1666. MR 3436230, DOI 10.1512/iumj.2015.64.5717
- Namkwon Kim, Eigenvalues associated with the vortex patch in 2-D Euler equations, Math. Ann. 330 (2004), no. 4, 747–758. MR 2102311, DOI 10.1007/s00208-004-0568-4
- Alexander Kiselev and Chao Li, Global regularity and fast small-scale formation for Euler patch equation in a smooth domain, Comm. Partial Differential Equations 44 (2019), no. 4, 279–308. MR 3941226, DOI 10.1080/03605302.2018.1546318
- Alexander Kiselev, Lenya Ryzhik, Yao Yao, and Andrej Zlatoš, Finite time singularity for the modified SQG patch equation, Ann. of Math. (2) 184 (2016), no. 3, 909–948. MR 3549626, DOI 10.4007/annals.2016.184.3.7
- Alexander Kiselev and Vladimir Šverák, Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. of Math. (2) 180 (2014), no. 3, 1205–1220. MR 3245016, DOI 10.4007/annals.2014.180.3.9
- Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
- Paolo Luzzatto-Fegiz, Bifurcation structure and stability in models of opposite-signed vortex pairs, Fluid Dyn. Res. 46 (2014), no. 3, 031408, 14. MR 3224238, DOI 10.1088/0169-5983/46/3/031408
- Paolo Luzzatto-Fegiz and Charles H. K. Williamson, An efficient and general numerical method to compute steady uniform vortices, J. Comput. Phys. 230 (2011), no. 17, 6495–6511. MR 2818610, DOI 10.1016/j.jcp.2011.04.035
- Paolo Luzzatto-Fegiz and Charles H. K. Williamson, Investigating stability and finding new solutions in conservative fluid flows through bifurcation approaches, Nonlinear physical systems, Mech. Eng. Solid Mech. Ser., Wiley, Hoboken, NJ, 2014, pp. 203–221. MR 3330803
- Andrew Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S187–S220. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861488, DOI 10.1002/cpa.3160390711
- Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882
- Carlo Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys. 164 (1994), no. 3, 507–524. MR 1291243
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- Gerard Misiołek and Tsuyoshi Yoneda, Local ill-posedness of the incompressible Euler equations in $C^1$ and $B^1_{\infty ,1}$, Math. Ann. 364 (2016), no. 1-2, 243–268. MR 3451386, DOI 10.1007/s00208-015-1213-0
- Gerard Misiołek and Tsuyoshi Yoneda, Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces, Trans. Amer. Math. Soc. 370 (2018), no. 7, 4709–4730. MR 3812093, DOI 10.1090/tran/7101
- Piotr Bogusław Mucha and Walter M. Rusin, Zygmund spaces, inviscid limit and uniqueness of Euler flows, Comm. Math. Phys. 280 (2008), no. 3, 831–841. MR 2399615, DOI 10.1007/s00220-008-0452-2
- Edward A. Overman II, Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting $V$-states, SIAM J. Appl. Math. 46 (1986), no. 5, 765–800. MR 858995, DOI 10.1137/0146049
- Lorenzo M. Polvani and David G. Dritschel, Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech. 255 (1993), 35–64. MR 1244223, DOI 10.1017/S0022112093002381
- D. I. Pullin, The large-scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech. 88 (1978), no. 3, 401–430. MR 511480, DOI 10.1017/S0022112078002189
- D. I. Pullin, On similarity flows containing two-branched vortex sheets, Mathematical aspects of vortex dynamics (Leesburg, VA, 1988) SIAM, Philadelphia, PA, 1989, pp. 97–106. MR 1001793
- D. I. Pullin, Vortex tubes, spirals, and large-eddy simulation of turbulence, Tubes, sheets and singularities in fluid dynamics (Zakopane, 2001) Fluid Mech. Appl., vol. 71, Kluwer Acad. Publ., Dordrecht, 2002, pp. 171–180. MR 1989144, DOI 10.1007/0-306-48420-X_{2}4
- P. G. Saffman, Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992. MR 1217252
- P. G. Saffman and R. Szeto, Equilibrium shapes of a pair of equal uniform vortices, Phys. Fluids 23 (1980), no. 12, 2339–2342. MR 594039, DOI 10.1063/1.862935
- P. G. Saffman and S. Tanveer, The touching pair of equal and opposite uniform vortices, Phys. Fluids 25 (1982), no. 11, 1929–1930. MR 680023, DOI 10.1063/1.863679
- Philippe Serfati, Régularité stratifiée et équation d’Euler $3$D à temps grand, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 10, 925–928 (French, with English and French summaries). MR 1278153
- Philippe Serfati, Une preuve directe d’existence globale des vortex patches $2$D, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 6, 515–518 (French, with English and French summaries). MR 1270072
- Philippe Serfati, Solutions $C^\infty$ en temps, $n$-$\log$ Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 5, 555–558 (French, with English and French summaries). MR 1322336
- Philippe Serfati, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl. (9) 74 (1995), no. 2, 95–104 (French). MR 1325824
- Sung-Ik Sohn, Takashi Sakajo, and Sun-Chul Kim, Stability of barotropic vortex strip on a rotating sphere, Proc. A. 474 (2018), no. 2210, 20170883, 25. MR 3782787, DOI 10.1098/rspa.2017.0883
- Yasushi Taniuchi, Uniformly local $L^p$ estimate for 2-D vorticity equation and its application to Euler equations with initial vorticity in $\textbf {bmo}$, Comm. Math. Phys. 248 (2004), no. 1, 169–186. MR 2104609, DOI 10.1007/s00220-004-1095-6
- Yasushi Taniuchi, Tomoya Tashiro, and Tsuyoshi Yoneda, On the two-dimensional Euler equations with spatially almost periodic initial data, J. Math. Fluid Mech. 12 (2010), no. 4, 594–612. MR 2749445, DOI 10.1007/s00021-009-0304-7
- Misha Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 769–812 (English, with English and French summaries). MR 1717576, DOI 10.1016/S0012-9593(00)87718-6
- H. M. Wu, E. A. Overman II, and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results, J. Comput. Phys. 53 (1984), no. 1, 42–71. MR 734586, DOI 10.1016/0021-9991(84)90051-2
- Xiaoqian Xu, Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow, J. Math. Anal. Appl. 439 (2016), no. 2, 594–607. MR 3475939, DOI 10.1016/j.jmaa.2016.02.066
- B. B. Xue, E. R. Johnson, and N. R. McDonald. New families of vortex patch equilibria for the two-dimensional Euler equations. Physics of Fluids, 29(12):123602, 2017.
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
- V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett. 2 (1995), no. 1, 27–38. MR 1312975, DOI 10.4310/MRL.1995.v2.n1.a4
- Norman J. Zabusky, M. H. Hughes, and K. V. Roberts, Contour dynamics for the Euler equations in two dimensions, J. Comput. Phys. 30 (1979), no. 1, 96–106. MR 524163, DOI 10.1016/0021-9991(79)90089-5
- Andrej Zlatoš, Exponential growth of the vorticity gradient for the Euler equation on the torus, Adv. Math. 268 (2015), 396–403. MR 3276599, DOI 10.1016/j.aim.2014.08.012
- Q. Zou, E. A. Overman, H. M. Wu, and N. J. Zabusky. Contour dynamics for the Euler equations: Curvature controlled initial node placement and accuracy. J. Comp. Phys., 78:350–368, 1988.