
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume
About this Title
Roberto Frigerio and Marco Moraschini
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 283, Number 1402
ISBNs: 978-1-4704-5991-8 (print); 978-1-4704-7403-4 (online)
DOI: https://doi.org/10.1090/memo/1402
Published electronically: January 20, 2023
Keywords: bounded cohomology; simplicial volume; multicomplex; simplicial complex; simplicial set; Kan complex; singular homology; singular cohomology; $\ell ^1$-homology; amenable group; homotopy groups; diffusion operator
Table of Contents
Chapters
- Introduction
1. The General Theory of Multicomplexes
- 1. Multicomplexes
- 2. The Singular Multicomplex
- 3. The Homotopy Theory of Complete Multicomplexes
2. Multicomplexes, Bounded Cohomology and Simplicial Volume
- 4. Bounded Cohomology of Multicomplexes
- 5. The Mapping Theorem
- 6. The Vanishing Theorem
3. The Simplicial Volume of Open Manifolds
- 7. Finiteness and Vanishing Theorems for Locally Finite Homology
- 8. Diffusion of Chains
- 9. Admissible Submulticomplexes of $\mathcal {K}(X)$
- 10. Diffusion of Locally Finite Chains on the Admissible Multicomplex
- 11. Some Results on the Simplicial Volume of Open Manifolds
Abstract
The simplicial volume is a homotopy invariant of manifolds introduced by Gromov in his pioneering paper Volume and bounded cohomology. In order to study the main properties of simplicial volume, Gromov himself initiated the dual theory of bounded cohomology, which then developed into a very active and independent research field. Gromov’s theory of bounded cohomology of topological spaces was based on the use of multicomplexes, which are simplicial structures that generalize simplicial complexes without allowing all the degeneracies appearing in simplicial sets.
The first aim of this paper is to lay the foundation of the theory of multicomplexes. After setting the main definitions, we construct the singular multicomplex $\mathcal {K}(X)$ associated to a topological space $X$, and we prove that the geometric realization of $\mathcal {K}(X)$ is homotopy equivalent to $X$ for every CW complex $X$. Following Gromov, we introduce the notion of completeness, which, roughly speaking, translates into the context of multicomplexes the Kan condition for simplicial sets. We then develop the homotopy theory of complete multicomplexes, and we show that $\mathcal {K}(X)$ is complete for every CW complex $X$.
In the second part of this work we apply the theory of multicomplexes to the study of the bounded cohomology of topological spaces. Our constructions and arguments culminate in the complete proofs of Gromov’s Mapping Theorem (which implies in particular that the bounded cohomology of a space only depends on its fundamental group) and of Gromov’s Vanishing Theorem, which ensures the vanishing of the simplicial volume of closed manifolds admitting an amenable cover of small multiplicity.
The third and last part of the paper is devoted to the study of locally finite chains on non-compact spaces, hence to the simplicial volume of open manifolds. We expand some ideas of Gromov to provide detailed proofs of a criterion for the vanishing and a criterion for the finiteness of the simplicial volume of open manifolds. As a by-product of these results, we prove a criterion for the $\ell ^1$-invisibility of closed manifolds in terms of amenable covers. As an application, we give the first detailed proof of the vanishing of the simplicial volume of the product of three open manifolds.
- Hannah Alpert, Using simplicial volume to count maximally broken Morse trajectories, Geom. Topol. 20 (2016), no. 5, 2997–3018. MR 3556353, DOI 10.2140/gt.2016.20.2997
- Hannah Alpert and Gabriel Katz, Using simplicial volume to count multi-tangent trajectories of traversing vector fields, Geom. Dedicata 180 (2016), 323–338. MR 3451470, DOI 10.1007/s10711-015-0104-6
- I. Babenko and S. Sabourau, Volume entropy semi-norm. arXiv:1909.10803.
- F. Balacheff and S. Karam, Macroscopic Schoen conjecture for manifolds with nonzero simplicial volume, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7071–7086. MR 4024547, DOI 10.1090/tran/7765
- L. Bessières, G. Besson, M. Boileau, S. Maillot, and J. Porti, Collapsing irreducible 3-manifolds with nontrivial fundamental group, Invent. Math. 179 (2010), no. 2, 435–460. MR 2570121, DOI 10.1007/s00222-009-0222-6
- Laurent Bessières, Gérard Besson, Sylvain Maillot, Michel Boileau, and Joan Porti, Geometrisation of 3-manifolds, EMS Tracts in Mathematics, vol. 13, European Mathematical Society (EMS), Zürich, 2010. MR 2683385, DOI 10.4171/082
- Matthias Blank, Relative bounded cohomology for groupoids, Geom. Dedicata 184 (2016), 27–66. MR 3547780, DOI 10.1007/s10711-016-0156-2
- Michel Boileau, J. Hyam Rubinstein, and Shicheng Wang, Finiteness of 3-manifolds associated with non-zero degree mappings, Comment. Math. Helv. 89 (2014), no. 1, 33–68. MR 3177908, DOI 10.4171/CMH/312
- Robert Brooks, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., No. 97, Princeton Univ. Press, Princeton, NJ, 1981, pp. 53–63. MR 624804
- Michelle Bucher, Simplicial volume of products and fiber bundles, Discrete groups and geometric structures, Contemp. Math., vol. 501, Amer. Math. Soc., Providence, RI, 2009, pp. 79–86. MR 2581916, DOI 10.1090/conm/501/09841
- M. Bucher, M. Burger, R. Frigerio, A. Iozzi, C. Pagliantini, and M. B. Pozzetti, Isometric embeddings in bounded cohomology, J. Topol. Anal. 6 (2014), no. 1, 1–25. MR 3190136, DOI 10.1142/S1793525314500058
- Michelle Bucher, Chris Connell, and Jean-François Lafont, Vanishing simplicial volume for certain affine manifolds, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1287–1294. MR 3750239, DOI 10.1090/proc/13799
- Michelle Bucher, Roberto Frigerio, and Cristina Pagliantini, The simplicial volume of 3-manifolds with boundary, J. Topol. 8 (2015), no. 2, 457–475. MR 3356768, DOI 10.1112/jtopol/jtv001
- Michelle Bucher, Roberto Frigerio, and Cristina Pagliantini, A quantitative version of a theorem by Jungreis, Geom. Dedicata 187 (2017), 199–218. MR 3622690, DOI 10.1007/s10711-016-0197-6
- Michelle Bucher and Tsachik Gelander, The generalized Chern conjecture for manifolds that are locally a product of surfaces, Adv. Math. 228 (2011), no. 3, 1503–1542. MR 2824562, DOI 10.1016/j.aim.2011.06.022
- Michelle Bucher, Inkang Kim, and Sungwoon Kim, Proportionality principle for the simplicial volume of families of $\Bbb {Q}$-rank 1 locally symmetric spaces, Math. Z. 276 (2014), no. 1-2, 153–172. MR 3150197, DOI 10.1007/s00209-013-1191-4
- Michelle Bucher-Karlsson, Simplicial volume of locally symmetric spaces covered by $\textrm {SL}_3\Bbb R/\textrm {SO}(3)$, Geom. Dedicata 125 (2007), 203–224. MR 2322549, DOI 10.1007/s10711-007-9158-4
- Michelle Bucher-Karlsson, The proportionality constant for the simplicial volume of locally symmetric spaces, Colloq. Math. 111 (2008), no. 2, 183–198. MR 2365796, DOI 10.4064/cm111-2-2
- Michelle Bucher-Karlsson, The simplicial volume of closed manifolds covered by $\Bbb H^2\times \Bbb H^2$, J. Topol. 1 (2008), no. 3, 584–602. MR 2417444, DOI 10.1112/jtopol/jtn012
- Theo Bühler, On the algebraic foundations of bounded cohomology, Mem. Amer. Math. Soc. 214 (2011), no. 1006, xxii+97. MR 2867320, DOI 10.1090/S0065-9266-2011-00618-0
- M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 199–235. MR 1694584, DOI 10.1007/s100970050007
- M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219–280. MR 1911660, DOI 10.1007/s00039-002-8245-9
- Caterina Campagnolo and Roman Sauer, Counting maximally broken Morse trajectories on aspherical manifolds, Geom. Dedicata 202 (2019), 387–399. MR 4001823, DOI 10.1007/s10711-018-00420-2
- Chris Connell and Shi Wang, Some remarks on the simplicial volume of nonpositively curved manifolds, Math. Ann. 377 (2020), no. 3-4, 969–987. MR 4126886, DOI 10.1007/s00208-020-01987-6
- Chris Connell and Shi Wang, Positivity of simplicial volume for nonpositively curved manifolds with a Ricci-type curvature condition, Groups Geom. Dyn. 13 (2019), no. 3, 1007–1034. MR 4016618, DOI 10.4171/GGD/512
- Pierre Derbez, Topological rigidity and Gromov simplicial volume, Comment. Math. Helv. 85 (2010), no. 1, 1–37. MR 2563679, DOI 10.4171/CMH/186
- Samuel Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407–447. MR 10970, DOI 10.2307/1969185
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, NJ, 1952. MR 50886
- Samuel Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math. (2) 51 (1950), 499–513. MR 35434, DOI 10.2307/1969364
- Daniel Fauser, Stefan Friedl, and Clara Löh, Integral approximation of simplicial volume of graph manifolds, Bull. Lond. Math. Soc. 51 (2019), no. 4, 715–731. MR 3990387, DOI 10.1112/blms.12266
- Daniel Fauser, Clara Löh, Marco Moraschini, and José Pedro Quintanilha, Stable integral simplicial volume of 3-manifolds, J. Topol. 14 (2021), no. 2, 608–640. MR 4286051, DOI 10.1112/topo.12193
- Stefano Francaviglia, Roberto Frigerio, and Bruno Martelli, Stable complexity and simplicial volume of manifolds, J. Topol. 5 (2012), no. 4, 977–1010. MR 3001317, DOI 10.1112/jtopol/jts026
- Federico Franceschini, Proportionality principle for the Lipschitz simplicial volume, Geom. Dedicata 182 (2016), 287–306. MR 3500388, DOI 10.1007/s10711-016-0139-3
- Federico Franceschini, A characterization of relatively hyperbolic groups via bounded cohomology, Groups Geom. Dyn. 12 (2018), no. 3, 919–960. MR 3845713, DOI 10.4171/GGD/463
- R. Frigerio, Amenable covers and $\ell ^1$-invisibility, J. Topol. Anal. 14 (2022), no. 2, 421–437. MR 4446914, DOI 10.1142/S1793525320500521
- Roberto Frigerio, (Bounded) continuous cohomology and Gromov’s proportionality principle, Manuscripta Math. 134 (2011), no. 3-4, 435–474. MR 2765720, DOI 10.1007/s00229-010-0402-0
- Roberto Frigerio, Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, vol. 227, American Mathematical Society, Providence, RI, 2017. MR 3726870, DOI 10.1090/surv/227
- Roberto Frigerio, Clara Löh, Cristina Pagliantini, and Roman Sauer, Integral foliated simplicial volume of aspherical manifolds, Israel J. Math. 216 (2016), no. 2, 707–751. MR 3557463, DOI 10.1007/s11856-016-1425-3
- Roberto Frigerio and Andrea Maffei, A remark on the double complex of a covering for singular cohomology, Homology Homotopy Appl. 23 (2021), no. 2, 59–68. MR 4242739, DOI 10.4310/hha.2021.v23.n2.a4
- Roberto Frigerio and Marco Moraschini, Ideal simplicial volume of manifolds with boundary, Int. Math. Res. Not. IMRN 7 (2021), 5214–5260. MR 4241127, DOI 10.1093/imrn/rny302
- Roberto Frigerio and Cristina Pagliantini, The simplicial volume of hyperbolic manifolds with geodesic boundary, Algebr. Geom. Topol. 10 (2010), no. 2, 979–1001. MR 2629772, DOI 10.2140/agt.2010.10.979
- Roberto Frigerio and Cristina Pagliantini, Relative measure homology and continuous bounded cohomology of topological pairs, Pacific J. Math. 257 (2012), no. 1, 91–130. MR 2948460, DOI 10.2140/pjm.2012.257.91
- Rudolf Fritsch and Renzo A. Piccinini, Cellular structures in topology, Cambridge Studies in Advanced Mathematics, vol. 19, Cambridge University Press, Cambridge, 1990. MR 1074175, DOI 10.1017/CBO9780511983948
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Marco Grandis, Finite sets and symmetric simplicial sets, Theory Appl. Categ. 8 (2001), 244–252. MR 1825431
- Marco Grandis, Higher fundamental functors for simplicial sets, Cahiers Topologie Géom. Différentielle Catég. 42 (2001), no. 2, 101–136 (English, with French summary). MR 1839359
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- Mikhail Gromov, Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), no. 3, 743–841. MR 2563769, DOI 10.1007/s00039-009-0021-7
- Misha Gromov and Larry Guth, Generalizations of the Kolmogorov-Barzdin embedding estimates, Duke Math. J. 161 (2012), no. 13, 2549–2603. MR 2988903, DOI 10.1215/00127094-1812840
- Larry Guth, Volumes of balls in large Riemannian manifolds, Ann. of Math. (2) 173 (2011), no. 1, 51–76. MR 2753599, DOI 10.4007/annals.2011.173.1.2
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- M. Hoster and D. Kotschick, On the simplicial volumes of fiber bundles, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1229–1232. MR 1709754, DOI 10.1090/S0002-9939-00-05645-8
- Hisao Inoue and Koichi Yano, The Gromov invariant of negatively curved manifolds, Topology 21 (1982), no. 1, 83–89. MR 630882, DOI 10.1016/0040-9383(82)90043-X
- S. Zwanzig, A note on: “An asymptotic expansion of the distribution of least squares estimators in the nonlinear regression model” by A. V. Ivanov and the author, Math. Operationsforsch. Statist. Ser. Statist. 14 (1983), no. 1, 29–32. MR 697336, DOI 10.1080/02331888308801682
- N. V. Ivanov, Foundations of the theory of bounded cohomology, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 143 (1985), 69–109, 177–178 (Russian, with English summary). Studies in topology, V. MR 806562
- Sergei O. Ivanov, Roman Mikhailov, and Jie Wu, On nontriviality of certain homotopy groups of spheres, Homology Homotopy Appl. 18 (2016), no. 2, 337–344. MR 3576002, DOI 10.4310/HHA.2016.v18.n2.a18
- J. F. Jardine, Simplicial approximation, Theory Appl. Categ. 12 (2004), No. 2, 34–72. MR 2056093
- Daniel M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282–312. MR 111032, DOI 10.2307/1970006
- Gabriel Katz, Complexity of shadows and traversing flows in terms of the simplicial volume, J. Topol. Anal. 8 (2016), no. 3, 501–543. MR 3509571, DOI 10.1142/S1793525316500217
- Sungwoon Kim and Thilo Kuessner, Simplicial volume of compact manifolds with amenable boundary, J. Topol. Anal. 7 (2015), no. 1, 23–46. MR 3284388, DOI 10.1142/S1793525315500028
- Thilo Kuessner, Multicomplexes, bounded cohomology and additivity of simplicial volume, Bull. Korean Math. Soc. 52 (2015), no. 6, 1855–1899. MR 3432724, DOI 10.4134/BKMS.2015.52.6.1855
- Jean-François Lafont and Christoforos Neofytidis, Steenrod problem and the domination relation, Topology Appl. 255 (2019), 32–40. MR 3901768, DOI 10.1016/j.topol.2018.12.016
- Jean-François Lafont and Benjamin Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math. 197 (2006), no. 1, 129–143. MR 2285319, DOI 10.1007/s11511-006-0009-1
- Clara Löh, Measure homology and singular homology are isometrically isomorphic, Math. Z. 253 (2006), no. 1, 197–218. MR 2206643, DOI 10.1007/s00209-005-0905-7
- C. Löh, Homology and simplicial volume, Ph.D. Thesis, 2007. available online at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216.
- Clara Löh, Isomorphisms in $l^1$-homology, Münster J. Math. 1 (2008), 237–265. MR 2502500
- Clara Löh and Cristina Pagliantini, Integral foliated simplicial volume of hyperbolic 3-manifolds, Groups Geom. Dyn. 10 (2016), no. 3, 825–865. MR 3551181, DOI 10.4171/GGD/368
- Clara Löh and Roman Sauer, Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume, J. Topol. 2 (2009), no. 1, 193–225. MR 2499443, DOI 10.1112/jtopol/jtp005
- Clara Löh and Roman Sauer, Simplicial volume of Hilbert modular varieties, Comment. Math. Helv. 84 (2009), no. 3, 457–470. MR 2507250, DOI 10.4171/CMH/169
- J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR 1206474
- Michael C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465–474. MR 196744
- John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357–362. MR 84138, DOI 10.2307/1969967
- I. Mineyev and A. Yaman, Relative hyperbolicity and bounded cohomology, 2007. available online at available online at http://www.math.uiuc.edu/$\sim$mineyev/math/art/rel-hyp.pdf.
- Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001. MR 1840942, DOI 10.1007/b80626
- Nicolas Monod, An invitation to bounded cohomology, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1183–1211. MR 2275641
- John C. Moore, Semi-simplicial complexes and Postnikov systems, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, México, 1958, pp. 232–247. MR 111027
- M. Moraschini, On Gromov’s theory of multicomplexes: the original approach to bounded cohomology and simplicial volume, Ph.D. Thesis, December 2018. available at https://etd.adm.unipi.it/t/etd-11242018-182437/.
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- Christoforos Neofytidis, Degrees of self-maps of products, Int. Math. Res. Not. IMRN 22 (2017), 6977–6989. MR 3737328, DOI 10.1093/imrn/rnw227
- Christoforos Neofytidis, Ordering Thurston’s geometries by maps of nonzero degree, J. Topol. Anal. 10 (2018), no. 4, 853–872. MR 3881042, DOI 10.1142/S1793525318500280
- HeeSook Park, Relative bounded cohomology, Topology Appl. 131 (2003), no. 3, 203–234. MR 1983079, DOI 10.1016/S0166-8641(02)00339-5
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- J. Rosický and W. Tholen, Left-determined model categories and universal homotopy theories, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3611–3623. MR 1990164, DOI 10.1090/S0002-9947-03-03322-1
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Yuli Rudyak, Piecewise linear structures on topological manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. MR 3467983, DOI 10.1142/9887
- Andrea Sambusetti, Minimal entropy and simplicial volume, Manuscripta Math. 99 (1999), no. 4, 541–560. MR 1713806, DOI 10.1007/s002290050190
- Roman Sauer, Amenable covers, volume and $L^2$-Betti numbers of aspherical manifolds, J. Reine Angew. Math. 636 (2009), 47–92. MR 2572246, DOI 10.1515/CRELLE.2009.082
- M. Schmidt, $L^2$-Betti numbers of $\mathcal {R}$-spaces and the integral foliated simplicial volume, Ph.D. Thesis, 2005.
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210112
- E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds, Pacific J. Math. 160 (1993), no. 1, 165–200. MR 1227511
- John R. Stallings, Lectures on polyhedral topology, Tata Institute of Fundamental Research Lectures on Mathematics, No. 43, Tata Institute of Fundamental Research, Bombay, 1967. Notes by G. Ananda Swarup. MR 238329
- Jeffrey Strom, Modern classical homotopy theory, Graduate Studies in Mathematics, vol. 127, American Mathematical Society, Providence, RI, 2011. MR 2839990, DOI 10.1090/gsm/127
- K. Strzałkowski, Lipschitz simplicial volume of connected sum. arXiv:1704.04636.
- Karol Strzałkowski, Piecewise straightening and Lipschitz simplicial volume, J. Topol. Anal. 9 (2017), no. 1, 167–193. MR 3594609, DOI 10.1142/S1793525317500133
- W. P. Thurston, The geometry and topology of $3$-manifolds, Princeton, 1979. mimeographed notes.
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
- J. H. C. Whitehead, On $C^1$-complexes, Ann. of Math. (2) 41 (1940), 809–824. MR 2545, DOI 10.2307/1968861
- J. H. C. Whitehead, The immersion of an open $3$-manifold in euclidean $3$-space, Proc. London Math. Soc. (3) 11 (1961), 81–90. MR 124916, DOI 10.1112/plms/s3-11.1.81
- E. C. Zeeman, Seminar on combinatorial topology, Institut des Hautes Études Scientifiques, 1963.
- E. C. Zeeman, Relative simplicial approximation, Proc. Cambridge Philos. Soc. 60 (1964), 39–43. MR 158403, DOI 10.1017/s0305004100037415