
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Multiplicative Invariant Fields of Dimension $\le 6$
About this Title
Akinari Hoshi, Ming-chang Kang and Aiichi Yamasaki
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 283, Number 1403
ISBNs: 978-1-4704-6022-8 (print); 978-1-4704-7404-1 (online)
DOI: https://doi.org/10.1090/memo/1403
Published electronically: January 20, 2023
Keywords: Rationality problems,
Noether’s problem,
crystallographic groups,
integral representations,
unramified Brauer groups,
algebraic tori
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries and the unramified Brauer groups
- 3. CARAT ID of the $\mathbb {Z}$-classes in dimensions $5$ and $6$
- 4. Proof of Theorem
- 5. Classification of elementary abelian groups $(C_2)^k$ in $GL_n(\mathbb {Z})$ with $n\leq 7$
- 6. The case $G=(C_2)^3$ with $H_u^2(G,M)\neq 0$
- 7. The case $G=A_6$ with $H_u^2(G,M)\neq 0$ and Noether’s problem for $N\rtimes A_6$
- 8. Some lattices of rank $2n+2, 4n$, and $p(p-1)$
- 9. GAP computation: an algorithm to compute $H_u^2(G,M)$
- 10. Tables: multiplicative invariant fields with non-trivial unramified Brauer groups
Abstract
The finite subgroups of $GL_4(\mathbb {Z})$ are classified up to conjugation in Brown, Büllow, Neubüser, Wondratscheck, and Zassenhaus (1978); in particular, there exist $710$ non-conjugate finite groups in $GL_4(\mathbb {Z})$. Each finite group $G$ of $GL_4(\mathbb {Z})$ acts naturally on $\mathbb {Z}^{\oplus 4}$; thus we get a faithful $G$-lattice $M$ with $\mathrm {rank}_\mathbb {Z} M=4$. In this way, there are exactly $710$ such lattices. Given a $G$-lattice $M$ with $\mathrm {rank}_\mathbb {Z} M=4$, the group $G$ acts on the rational function field $\mathbb {C}(M)≔\mathbb {C}(x_1,x_2,x_3,x_4)$ by multiplicative actions, i.e. purely monomial automorphisms over $\mathbb {C}$. We are concerned with the rationality problem of the fixed field $\mathbb {C}(M)^G$. A tool of our investigation is the unramified Brauer group of the field $\mathbb {C}(M)^G$ over $\mathbb {C}$. It is known that, if the unramified Brauer group, denoted by $\mathrm {Br}_u(\mathbb {C}(M)^G)$, is non-trivial, then the fixed field $\mathbb {C}(M)^G$ is not rational (= purely transcendental) over $\mathbb {C}$. A formula of the unramified Brauer group $\mathrm {Br}_u(\mathbb {C}(M)^G)$ for the multiplicative invariant field was found by Saltman in 1990. However, to calculate $\mathrm {Br}_u(\mathbb {C}(M)^G)$ for a specific multiplicatively invariant field requires additional efforts, even when the lattice $M$ is of rank equal to $4$. There is a direct decomposition $\mathrm {Br}_u(\mathbb {C}(M)^G)= B_0(G) \oplus H^2_u(G,M)$ where $H^2_u(G,M)$ is some subgroup of $H^2(G,M)$. The first summand $B_0(G)$, which is related to the faithful linear representations of $G$, has been investigated by many authors. But the second summand $H^2_u(G,M)$ doesn’t receive much attention except when the rank is $\le 3$. Theorem 1. Among the $710$ finite groups $G$, let $M$ be the associated faithful $G$-lattice with $\mathrm {rank}_\mathbb {Z} M=4$, there exist precisely $5$ lattices $M$ with $\mathrm {Br}_u(\mathbb {C}(M)^G)\neq 0$. In these situations, $B_0(G)=0$ and thus $\mathrm {Br}_u(\mathbb {C}(M)^G)\subset H^2(G,M)$. The $5$ groups are isomorphic to $D_4$, $Q_8$, $QD_8$, $SL_2(\mathbb {F}_3)$, $GL_2(\mathbb {F}_3)$ whose GAP IDs are (4,12,4,12), (4,32,1,2), (4,32,3,2), (4,33,3,1), (4,33,6,1) respectively in Brown, Büllow, Neubüser, Wondratscheck, and Zassenhaus (1978) and in The GAP Group (2008). Theorem 2. There exist $6079$ (resp. $85308$) finite subgroups $G$ in $GL_5(\mathbb {Z})$ (resp. $GL_6(\mathbb {Z})$). Let $M$ be the lattice with rank $5$ (resp. $6$) associated to each group $G$. Among these lattices precisely $46$ (resp. $1073$) of them satisfy the condition $\mathrm {Br}_u(\mathbb {C}(M)^G)\neq 0$. The GAP IDs (actually the CARAT IDs) of the corresponding groups $G$ may be determined explicitly. Motivated by these results, we construct $G$-lattices $M$ of rank $2n+2$, $4n$, $p(p-1)$ ($n$ is any positive integer and $p$ is any odd prime number) satisfying that $B_0(G)=0$ and $H^2_u(G,M)\neq 0$; and therefore $\mathbb {C}(M)^G$ are not rational over $\mathbb {C}$. For these $G$-lattices $M$, we prove that the flabby class $[M]^{fl}$ of $M$ is not invertible. We also construct an example of $(C_2)^3$-lattice (resp. $A_6$-lattice) $M$ of rank $7$ (resp. $9$) with $\mathrm {Br}_u(\mathbb {C}(M)^G)\neq 0$. As a consequence, we give a counter-example to Noether’s problem for $N\rtimes A_6$ over $\mathbb {C}$ where $N$ is some abelian group.- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95. MR 321934, DOI 10.1112/plms/s3-25.1.75
- Jean Barge, Cohomologie des groupes et corps d’invariants multiplicatifs, Math. Ann. 283 (1989), no. 3, 519–528 (French). MR 985247, DOI 10.1007/BF01442744
- Jean Barge, Cohomologie des groupes et corps d’invariants multiplicatifs tordus, Comment. Math. Helv. 72 (1997), no. 1, 1–15 (French, with English summary). MR 1456312, DOI 10.1007/PL00000360
- Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert, and Alfred Wassermann, Error-correcting linear codes, Algorithms and Computation in Mathematics, vol. 18, Springer-Verlag, Berlin, 2006. Classification by isometry and applications; With 1 CD-ROM (Windows and Linux). MR 2265727
- Harold Brown, Rolf Bülow, Joachim Neubüser, Hans Wondratschek, and Hans Zassenhaus, Crystallographic groups of four-dimensional space, Wiley Monographs in Crystallography, Wiley-Interscience [John Wiley & Sons], New York-Chichester-Brisbane, 1978. MR 484179
- F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 455–485. MR 903621, DOI 10.1070/IM1988v030n03ABEH001024
- Gregory Butler and John McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no. 8, 863–911. MR 695893, DOI 10.1080/00927878308822884
- J. Opgenorth, W. Plesken and T. Schulz, CARAT, GAP 4 package, version 2.1b1, 2008, available from http://wwwb.math.rwth-aachen.de/carat/.
- Huah Chu, Shou-Jen Hu, and Ming-chang Kang, Noether’s problem for dihedral 2-groups, Comment. Math. Helv. 79 (2004), no. 1, 147–159. MR 2031703, DOI 10.1007/s00014-003-0783-8
- Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Boris E. Kunyavskii, Noether’s problem and the unramified Brauer group for groups of order 64, Int. Math. Res. Not. IMRN 12 (2010), 2329–2366. MR 2652224, DOI 10.1093/imrn/rnp217
- Huah Chu, Shou-Jen Hu, Ming-chang Kang, and Y. G. Prokhorov, Noether’s problem for groups of order 32, J. Algebra 320 (2008), no. 7, 3022–3035. MR 2442008, DOI 10.1016/j.jalgebra.2008.07.007
- Huah Chu and Ming-chang Kang, Rationality of $p$-group actions, J. Algebra 237 (2001), no. 2, 673–690. MR 1816710, DOI 10.1006/jabr.2000.8615
- Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141–158 (French). MR 999316, DOI 10.1007/BF01850658
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280
- Karel Dekimpe, Manfred Hartl, and Sarah Wauters, Addendum to “A seven-term exact sequence for the cohomology of a group extension” [J. Algebra 369 (1) (2012) 70–95] [MR2959787], J. Algebra 373 (2013), 439–440. MR 2995036, DOI 10.1016/j.jalgebra.2012.10.017
- Shizuo Endô and Takehiko Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7–26. MR 311754, DOI 10.2969/jmsj/02510007
- Shizuo Endô and Takehiko Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), 85–104. MR 364203
- E. Fischer, Die Isomorphie der Invariantenkörper der endlichen Abel’schen Gruppen linearer Transformationen, Nachr. Königl. Ges. Wiss. Göttingen (1915) 77–80.
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008 (http://www.gap-system.org).
- Mowaffaq Hajja, Rationality of finite groups of monomial automorphisms of $k(x,y)$, J. Algebra 109 (1987), no. 1, 46–51. MR 898335, DOI 10.1016/0021-8693(87)90162-1
- G. Ellis, The GAP package HAP, available from http://www.gap-system.org/Packages/hap.html.
- Mowaffaq Hajja and Ming Chang Kang, Finite group actions on rational function fields, J. Algebra 149 (1992), no. 1, 139–154. MR 1165204, DOI 10.1016/0021-8693(92)90009-B
- Mowaffaq Hajja and Ming Chang Kang, Three-dimensional purely monomial group actions, J. Algebra 170 (1994), no. 3, 805–860. MR 1305266, DOI 10.1006/jabr.1994.1366
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8
- Akinari Hoshi, Ming-chang Kang, and Hidetaka Kitayama, Quasi-monomial actions and some 4-dimensional rationality problems, J. Algebra 403 (2014), 363–400. MR 3166080, DOI 10.1016/j.jalgebra.2014.01.019
- Akinari Hoshi, Ming-Chang Kang, and Boris E. Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math. 17 (2013), no. 4, 689–713. MR 3152260, DOI 10.4310/AJM.2013.v17.n4.a8
- Akinari Hoshi, Ming-chang Kang, and Aiichi Yamasaki, Degree three unramified cohomology groups, J. Algebra 458 (2016), 120–133. MR 3500770, DOI 10.1016/j.jalgebra.2016.03.016
- Akinari Hoshi and Yūichi Rikuna, Rationality problem of three-dimensional purely monomial group actions: the last case, Math. Comp. 77 (2008), no. 263, 1823–1829. MR 2398796, DOI 10.1090/S0025-5718-08-02069-3
- Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017), no. 1176, v+215. MR 3685951, DOI 10.1090/memo/1176
- Johannes Huebschmann, Group extensions, crossed pairs and an eight term exact sequence, J. Reine Angew. Math. 321 (1981), 150–172. MR 597986, DOI 10.1515/crll.1981.321.150
- Ming-chang Kang, Retract rationality and Noether’s problem, Int. Math. Res. Not. IMRN 15 (2009), 2760–2788. MR 2525840, DOI 10.1093/imrn/rnp032
- Ming-chang Kang, Retract rational fields, J. Algebra 349 (2012), 22–37. MR 2853623, DOI 10.1016/j.jalgebra.2011.10.024
- Ming-Chang Kang and Bernat Plans, Reduction theorems for Noether’s problem, Proc. Amer. Math. Soc. 137 (2009), no. 6, 1867–1874. MR 2480265, DOI 10.1090/S0002-9939-09-09608-7
- Boris Kunyavskiĭ, The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 209–217. MR 2605170, DOI 10.1007/978-0-8176-4934-0_{8}
- H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325. MR 347788, DOI 10.1007/BF01389732
- Primož Moravec, Unramified Brauer groups of finite and infinite groups, Amer. J. Math. 134 (2012), no. 6, 1679–1704. MR 2999292, DOI 10.1353/ajm.2012.0046
- Emmanuel Peyre, Unramified cohomology of degree 3 and Noether’s problem, Invent. Math. 171 (2008), no. 1, 191–225. MR 2358059, DOI 10.1007/s00222-007-0080-z
- Wilhelm Plesken and Tilman Schulz, Counting crystallographic groups in low dimensions, Experiment. Math. 9 (2000), no. 3, 407–411. MR 1795312
- David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250–283. MR 648801, DOI 10.1016/0001-8708(82)90036-6
- David J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84. MR 751131, DOI 10.1007/BF01389135
- David J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984), no. 2-3, 165–215. MR 738167, DOI 10.1007/BF02760515
- David J. Saltman, Multiplicative field invariants, J. Algebra 106 (1987), no. 1, 221–238. MR 878475, DOI 10.1016/0021-8693(87)90028-7
- David J. Saltman, Multiplicative field invariants and the Brauer group, J. Algebra 133 (1990), no. 2, 533–544. MR 1067425, DOI 10.1016/0021-8693(90)90288-Y
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Richard G. Swan, Noether’s problem in Galois theory, Emmy Noether in Bryn Mawr (Bryn Mawr, Pa., 1982) Springer, New York-Berlin, 1983, pp. 21–40. MR 713790
- V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. MR 1634406, DOI 10.1090/mmono/179