
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Spectral Properties of Ruelle Transfer Operators for Regular Gibbs Measures and Decay of Correlations for Contact Anosov Flows
About this Title
Luchezar Stoyanov
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 283, Number 1404
ISBNs: 978-1-4704-5625-2 (print); 978-1-4704-7405-8 (online)
DOI: https://doi.org/10.1090/memo/1404
Published electronically: January 20, 2023
Keywords: Anosov flow,
contact flow,
Ruelle transfer operator,
spectrum,
decay of correlations,
contraction operators,
zeta function,
periodic orbits
Table of Contents
Chapters
- 1. Introduction and Results
- 2. Preliminaries
- 3. Lyapunov exponents and Lyapunov regularity functions
- 4. Non-integrability of contact Anosov flows
- 5. Main estimates for temporal distances
- 6. Contraction operators
- 7. $L^1$ contraction estimates
- 8. Proofs of the main results
- 9. Temporal distance estimates on cylinders
- 10. Regular distortion for Anosov flows
- A. Proofs of some technical lemmas
Abstract
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact Anosov flows. The ultimate aim is to establish exponential decay of correlations for Hölder observables with respect to a very general class of Gibbs measures. The approach invented in 1997 by Dolgopyat in “On decay of correlations in Anosov flows” and further developed in Stoyanov (2011) is substantially refined here, allowing to deal with much more general situations than before, although we still restrict ourselves to the uniformly hyperbolic case. A rather general procedure is established which produces the desired estimates whenever the Gibbs measure admits a Pesin set with exponentially small tails, that is a Pesin set whose preimages along the flow have measures decaying exponentially fast. We call such Gibbs measures regular. Recent results in Gouëzel and Stoyanov (2019) prove existence of such Pesin sets for hyperbolic diffeomorphisms and flows for a large variety of Gibbs measures determined by Hölder continuous potentials. The strong spectral estimates for Ruelle operators and well-established techniques lead to exponential decay of correlations for Hölder continuous observables, as well as to some other consequences such as: (a) existence of a non-zero analytic continuation of the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (b) a Prime Orbit Theorem with an exponentially small error.- Nalini Anantharaman, Precise counting results for closed orbits of Anosov flows, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 1, 33–56 (English, with English and French summaries). MR 1743718, DOI 10.1016/S0012-9593(00)00102-6
- V. Araújo, O. Butterley, and P. Varandas, Open sets of axiom A flows with exponentially mixing attractors, Proc. Amer. Math. Soc. 144 (2016), no. 7, 2971–2984. MR 3487229, DOI 10.1090/proc/13055
- Vitor Araújo and Ian Melbourne, Exponential decay of correlations for nonuniformly hyperbolic flows with a $C^{1+\alpha }$ stable foliation, including the classical Lorenz attractor, Ann. Henri Poincaré 17 (2016), no. 11, 2975–3004. MR 3556513, DOI 10.1007/s00023-016-0482-9
- Artur Avila, Sébastien Gouëzel, and Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143–211. MR 2264836, DOI 10.1007/s10240-006-0001-5
- Artur Avila and Marcelo Viana, Simplicity of Lyapunov spectra: a sufficient criterion, Port. Math. (N.S.) 64 (2007), no. 3, 311–376. MR 2350698, DOI 10.4171/PM/1789
- Viviane Baladi and Sébastien Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn. 4 (2010), no. 1, 91–137. MR 2643889, DOI 10.3934/jmd.2010.4.91
- Viviane Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1793194, DOI 10.1142/9789812813633
- Viviane Baladi, Mark F. Demers, and Carlangelo Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math. 211 (2018), no. 1, 39–177. MR 3742756, DOI 10.1007/s00222-017-0745-1
- Viviane Baladi and Carlangelo Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Comm. Math. Phys. 314 (2012), no. 3, 689–773. MR 2964773, DOI 10.1007/s00220-012-1538-4
- Viviane Baladi and Masato Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 1, 127–154 (English, with English and French summaries). MR 2313087
- Viviane Baladi and Brigitte Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc. 133 (2005), no. 3, 865–874. MR 2113938, DOI 10.1090/S0002-9939-04-07671-3
- Péter Bálint, Péter Nándori, Domokos Szász, and Imre Péter Tóth, Equidistribution for standard pairs in planar dispersing billiard flows, Ann. Henri Poincaré 19 (2018), no. 4, 979–1042. MR 3775149, DOI 10.1007/s00023-018-0648-8
- Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, vol. 23, American Mathematical Society, Providence, RI, 2002. MR 1862379, DOI 10.1090/ulect/023
- Michael Blank, Gerhard Keller, and Carlangelo Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity 15 (2002), no. 6, 1905–1973. MR 1938476, DOI 10.1088/0951-7715/15/6/309
- Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460. MR 339281, DOI 10.2307/2373793
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- L. A. Bunimovich, Ya. G. Sinaĭ, and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 46 (1991), no. 4(280), 43–92, 192 (Russian); English transl., Russian Math. Surveys 46 (1991), no. 4, 47–106. MR 1138952, DOI 10.1070/RM1991v046n04ABEH002827
- N. I. Chernov, Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 269–324. MR 1626741, DOI 10.2307/121010
- N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94 (1999), no. 3-4, 513–556. MR 1675363, DOI 10.1023/A:1004581304939
- N. Chernov, Invariant measures for hyperbolic dynamical systems, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 321–407. MR 1928521, DOI 10.1016/S1874-575X(02)80006-6
- N. Chernov, A stretched exponential bound on time correlations for billiard flows, J. Stat. Phys. 127 (2007), no. 1, 21–50. MR 2313061, DOI 10.1007/s10955-007-9293-1
- Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR 2229799, DOI 10.1090/surv/127
- N. Chernov and L. S. Young, Decay of correlations for Lorentz gases and hard balls, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., vol. 101, Springer, Berlin, 2000, pp. 89–120. MR 1805327, DOI 10.1007/978-3-662-04062-1_{5}
- Kiril Datchev, Semyon Dyatlov, and Maciej Zworski, Sharp polynomial bounds on the number of Pollicott-Ruelle resonances, Ergodic Theory Dynam. Systems 34 (2014), no. 4, 1168–1183. MR 3227152, DOI 10.1017/etds.2013.3
- Mark F. Demers and Carlangelo Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4777–4814. MR 2403704, DOI 10.1090/S0002-9947-08-04464-4
- Mark F. Demers and Hong-Kun Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn. 5 (2011), no. 4, 665–709. MR 2903754, DOI 10.3934/jmd.2011.5.665
- Mark F. Demers and Hong-Kun Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys. 324 (2013), no. 3, 767–830. MR 3123537, DOI 10.1007/s00220-013-1820-0
- Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357–390. MR 1626749, DOI 10.2307/121012
- Dmitry Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1097–1114. MR 1653299, DOI 10.1017/S0143385798117431
- Dmitry Dolgopyat, Prevalence of rapid mixing. II. Topological prevalence, Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1045–1059. MR 1779392, DOI 10.1017/S0143385700000572
- Semyon Dyatlov, Frédéric Faure, and Colin Guillarmou, Power spectrum of the geodesic flow on hyperbolic manifolds, Anal. PDE 8 (2015), no. 4, 923–1000. MR 3366007, DOI 10.2140/apde.2015.8.923
- Semyon Dyatlov and Colin Guillarmou, Pollicott-Ruelle resonances for open systems, Ann. Henri Poincaré 17 (2016), no. 11, 3089–3146. MR 3556517, DOI 10.1007/s00023-016-0491-8
- Semyon Dyatlov and Maciej Zworski, Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity 28 (2015), no. 10, 3511–3533. MR 3404148, DOI 10.1088/0951-7715/28/10/3511
- Semyon Dyatlov and Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 3, 543–577 (English, with English and French summaries). MR 3503826, DOI 10.24033/asens.2290
- Semyon Dyatlov and Maciej Zworski, Ruelle zeta function at zero for surfaces, Invent. Math. 210 (2017), no. 1, 211–229. MR 3698342, DOI 10.1007/s00222-017-0727-3
- Frédéric Faure and Johannes Sjöstrand, Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys. 308 (2011), no. 2, 325–364 (English, with English and French summaries). MR 2851145, DOI 10.1007/s00220-011-1349-z
- Frédéric Faure and Masato Tsujii, Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 385–391 (English, with English and French summaries). MR 3072166, DOI 10.1016/j.crma.2013.04.022
- Frédéric Faure and Masato Tsujii, The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math. 208 (2017), no. 3, 851–998. MR 3648976, DOI 10.1007/s00222-016-0701-5
- Michael Field, Ian Melbourne, and Andrei Török, Stability of mixing and rapid mixing for hyperbolic flows, Ann. of Math. (2) 166 (2007), no. 1, 269–291. MR 2342697, DOI 10.4007/annals.2007.166.269
- P. Giulietti, C. Liverani, and M. Pollicott, Anosov flows and dynamical zeta functions, Ann. of Math. (2) 178 (2013), no. 2, 687–773. MR 3071508, DOI 10.4007/annals.2013.178.2.6
- Sébastien Gouëzel and Carlangelo Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 189–217. MR 2201945, DOI 10.1017/S0143385705000374
- Sébastien Gouëzel and Carlangelo Liverani, Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differential Geom. 79 (2008), no. 3, 433–477. MR 2433929
- Sébastien Gouëzel and Luchezar Stoyanov, Quantitative Pesin theory for Anosov diffeomorphisms and flows, Ergodic Theory Dynam. Systems 39 (2019), no. 1, 159–200. MR 3881129, DOI 10.1017/etds.2017.25
- Boris Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 645–666. MR 1304137, DOI 10.1017/S0143385700008105
- Boris Hasselblatt, Regularity of the Anosov splitting. II, Ergodic Theory Dynam. Systems 17 (1997), no. 1, 169–172. MR 1440773, DOI 10.1017/S0143385797069757
- Boris Hasselblatt and Amie Wilkinson, Prevalence of non-Lipschitz Anosov foliations, Ergodic Theory Dynam. Systems 19 (1999), no. 3, 643–656. MR 1695913, DOI 10.1017/S0143385799133868
- Boris Hasselblatt and Jorg Schmeling, Dimension product structure of hyperbolic sets, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 88–96. MR 2084468, DOI 10.1090/S1079-6762-04-00133-7
- Morris W. Hirsch and Charles C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975), 225–238. MR 368077
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 501173
- Long Jin and Maciej Zworski, A local trace formula for Anosov flows, Ann. Henri Poincaré 18 (2017), no. 1, 1–35. With appendices by Frédéric Naud. MR 3592088, DOI 10.1007/s00023-016-0504-7
- Anatole Katok, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 757–785. With the collaboration of Keith Burns. MR 1304141, DOI 10.1017/S0143385700008142
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540–574. MR 819557, DOI 10.2307/1971329
- Carlangelo Liverani, Decay of correlations, Ann. of Math. (2) 142 (1995), no. 2, 239–301. MR 1343323, DOI 10.2307/2118636
- Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2) 159 (2004), no. 3, 1275–1312. MR 2113022, DOI 10.4007/annals.2004.159.1275
- Carlangelo Liverani, Invariant measures and their properties. A functional analytic point of view, Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, pp. 185–237. MR 2071241
- Ian Melbourne, Rapid decay of correlations for nonuniformly hyperbolic flows, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2421–2441. MR 2276628, DOI 10.1090/S0002-9947-06-04267-X
- Ian Melbourne, Decay of correlations for slowly mixing flows, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 163–190. MR 2472164, DOI 10.1112/plms/pdn028
- Frédéric Naud, Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 116–153 (English, with English and French summaries). MR 2136484, DOI 10.1016/j.ansens.2004.11.002
- Stéphane Nonnenmacher and Maciej Zworski, Decay of correlations for normally hyperbolic trapping, Invent. Math. 200 (2015), no. 2, 345–438. MR 3338007, DOI 10.1007/s00222-014-0527-y
- Hee Oh and Dale Winter, Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of $\textrm {SL}_2(\Bbb {Z})$, J. Amer. Math. Soc. 29 (2016), no. 4, 1069–1115. MR 3522610, DOI 10.1090/jams/849
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 240280
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4(196), 55–112, 287 (Russian). MR 466791
- Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237, DOI 10.7208/chicago/9780226662237.001.0001
- Vesselin Petkov and Luchezar Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE 3 (2010), no. 4, 427–489. MR 2718260, DOI 10.2140/apde.2010.3.427
- Vesselin Petkov and Luchezar Stoyanov, Correlations for pairs of periodic trajectories for open billiards, Nonlinearity 22 (2009), no. 11, 2657–2679. MR 2550690, DOI 10.1088/0951-7715/22/11/005
- Vesselin Petkov and Luchezar Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys. 310 (2012), no. 3, 675–704. MR 2891871, DOI 10.1007/s00220-012-1419-x
- Vesselin Petkov and Luchezar Stoyanov, Sharp large deviations for some hyperbolic systems, Ergodic Theory Dynam. Systems 35 (2015), no. 1, 249–273. MR 3294300, DOI 10.1017/etds.2013.48
- Vesselin Petkov and Luchezar Stoyanov, Ruelle transfer operators with two complex parameters and applications, Discrete Contin. Dyn. Syst. 36 (2016), no. 11, 6413–6451. MR 3543593, DOI 10.3934/dcds.2016077
- Mark Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), no. 3, 413–426. MR 807065, DOI 10.1007/BF01388579
- M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows, Preprint 2014.
- Mark Pollicott and Richard Sharp, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math. 120 (1998), no. 5, 1019–1042. MR 1646052
- Mark Pollicott and Richard Sharp, Asymptotic expansions for closed orbits in homology classes, Geom. Dedicata 87 (2001), no. 1-3, 123–160. MR 1866845, DOI 10.1023/A:1012097314447
- Mark Pollicott and Richard Sharp, Correlations for pairs of closed geodesics, Invent. Math. 163 (2006), no. 1, 1–24. MR 2208416, DOI 10.1007/s00222-004-0427-7
- Mark Pollicott and Richard Sharp, Correlations of length spectra for negatively curved manifolds, Comm. Math. Phys. 319 (2013), no. 2, 515–533. MR 3037587, DOI 10.1007/s00220-012-1644-3
- M. Pollicott and R. Sharp, On the Hannay–Ozorio de Almeida sum formula, Dynamics, games and science. II, Springer Proc. Math., vol. 2, Springer, Heidelberg, 2011, pp. 575–590. MR 2883305, DOI 10.1007/978-3-642-14788-3_{4}1
- Charles Pugh and Michael Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1–54. MR 983869, DOI 10.1090/S0002-9947-1989-0983869-1
- Charles Pugh, Michael Shub, and Amie Wilkinson, Correction to: “Hölder foliations” [Duke Math. J. 86 (1997), no. 3, 517–546; MR1432307 (97m:58155)], Duke Math. J. 105 (2000), no. 1, 105–106. MR 1788044, DOI 10.1215/S0012-7094-00-10515-7
- V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5(137), 3–56 (Russian). MR 217258
- David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, MA, 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655
- David Ruelle, Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 4, 191–193 (French, with English summary). MR 692974, DOI 10.1142/9789812833709_{0}024
- D. Ruelle, Resonances for Axiom $\textbf {A}$ flows, J. Differential Geom. 25 (1987), no. 1, 99–116. MR 873457
- Omri Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), no. 3, 629–653. MR 1946554, DOI 10.1007/s00222-002-0248-5
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 399421
- Luchezar Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math. 123 (2001), no. 4, 715–759. MR 1844576
- Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24 (2011), no. 4, 1089–1120. MR 2776112, DOI 10.1088/0951-7715/24/4/005
- Luchezar Stoyanov, Non-integrability of open billiard flows and Dolgopyat-type estimates, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 295–313. MR 2873172, DOI 10.1017/S0143385710000933
- Luchezar Stoyanov, Regular decay of ball diameters and spectra of Ruelle operators for contact Anosov flows, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3463–3478. MR 2929015, DOI 10.1090/S0002-9939-2012-11637-5
- Luchezar Stoyanov, Pinching conditions, linearization and regularity of axiom A flows, Discrete Contin. Dyn. Syst. 33 (2013), no. 2, 391–412. MR 2975118, DOI 10.3934/dcds.2013.33.391
- Masato Tsujii, Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity 23 (2010), no. 7, 1495–1545. MR 2652469, DOI 10.1088/0951-7715/23/7/001
- Marcelo Viana, Lectures on Lyapunov exponents, Cambridge Studies in Advanced Mathematics, vol. 145, Cambridge University Press, Cambridge, 2014. MR 3289050, DOI 10.1017/CBO9781139976602
- D. Winter, Exponential mixing for frame flows for convex cocompact hyperbolic manifolds, Preprint; arXiv: 1612.00909.
- Paul Wright, Ruelle’s lemma and Ruelle zeta functions, Asymptot. Anal. 80 (2012), no. 3-4, 223–236. MR 3025044
- Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, DOI 10.2307/120960
- Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, DOI 10.1007/BF02808180