
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation
About this Title
Mohandas Pillai
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 284, Number 1407
ISBNs: 978-1-4704-5993-2 (print); 978-1-4704-7445-4 (online)
DOI: https://doi.org/10.1090/memo/1407
Published electronically: March 21, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Overview of the proof
- 3. Construction of the ansatz
- 4. Solving the final equation
- 5. The energy of the solution, and its decomposition as in Theorem
- A. Proof of Theorem
Abstract
We consider the wave maps problem with domain $\mathbb {R}^{2+1}$ and target $\mathbb {S}^{2}$ in the 1-equivariant, topological degree one setting. In this setting, we recall that the soliton is a harmonic map from $\mathbb {R}^{2}$ to $\mathbb {S}^{2}$, with polar angle equal to $Q_{1}(r) = 2 \arctan (r)$. By applying the scaling symmetry of the equation, $Q_{\lambda }(r) = Q_{1}(r \lambda )$ is also a harmonic map, and the family of all such $Q_{\lambda }$ are the unique minimizers of the harmonic map energy among finite energy, 1-equivariant, topological degree one maps. In this work, we construct infinite time blowup solutions along the $Q_{\lambda }$ family. More precisely, for $b>0$, and for all $\lambda _{0,0,b} \in C^{\infty }([100,\infty ))$ satisfying, for some $C_{l}, C_{m,k}>0$, \begin{equation*} \frac {C_{l}}{\log ^{b}(t)} \leq \lambda _{0,0,b}(t) \leq \frac {C_{m}}{\log ^{b}(t)}, \quad |\lambda _{0,0,b}^{(k)}(t)| \leq \frac {C_{m,k}}{t^{k} \log ^{b+1}(t) }, k\geq 1 \quad t \geq 100 \end{equation*} there exists a wave map with the following properties. If $u_{b}$ denotes the polar angle of the wave map into $\mathbb {S}^{2}$, we have \begin{equation*} u_{b}(t,r) = Q_{\frac {1}{\lambda _{b}(t)}}(r) + v_{2}(t,r) + v_{e}(t,r), \quad t \geq T_{0} \end{equation*} where \begin{equation*} -\partial _{tt}v_{2}+\partial _{rr}v_{2}+\frac {1}{r}\partial _{r}v_{2}-\frac {v_{2}}{r^{2}}=0 \end{equation*} \begin{equation*} ||\partial _{t}(Q_{\frac {1}{\lambda _{b}(t)}}+v_{e})||_{L^{2}(r dr)}^{2}+||\frac {v_{e}}{r}||_{L^{2}(r dr)}^{2} + ||\partial _{r}v_{e}||_{L^{2}(r dr)}^{2} \leq \frac {C}{t^{2} \log ^{2b}(t)}, \quad t \geq T_{0} \end{equation*} and \begin{equation*} \lambda _{b}(t) = \lambda _{0,0,b}(t) + O\left (\frac {1}{\log ^{b}(t) \sqrt {\log (\log (t))}}\right ) \end{equation*}- Ioan Bejenaru, Joachim Krieger, and Daniel Tataru, A codimension-two stable manifold of near soliton equivariant wave maps, Anal. PDE 6 (2013), no. 4, 829–857. MR 3092731, DOI 10.2140/apde.2013.6.829
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: I, Amer. J. Math. 137 (2015), no. 1, 139–207. MR 3318089, DOI 10.1353/ajm.2015.0002
- R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: II, Amer. J. Math. 137 (2015), no. 1, 209–250. MR 3318090, DOI 10.1353/ajm.2015.0003
- Roland Donninger and Joachim Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), no. 1, 89–163. MR 3084344, DOI 10.1007/s00208-013-0898-1
- Can Gao and Joachim Krieger, Optimal polynomial blow up range for critical wave maps, Commun. Pure Appl. Anal. 14 (2015), no. 5, 1705–1741. MR 3359541, DOI 10.3934/cpaa.2015.14.1705
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press, Inc., San Diego, CA, 1996. CD-ROM version 1.0 for PC, MAC, and UNIX computers. MR 1398882
- G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319, DOI 10.1017/CBO9780511662805
- Jacek Jendrej, Construction of two-bubble solutions for energy-critical wave equations, Amer. J. Math. 141 (2019), no. 1, 55–118. MR 3904767, DOI 10.1353/ajm.2019.0002
- Jacek Jendrej and Andrew Lawrie, Two-bubble dynamics for threshold solutions to the wave maps equation, Invent. Math. 213 (2018), no. 3, 1249–1325. MR 3842064, DOI 10.1007/s00222-018-0804-2
- Herbert Koch, Daniel Tataru, and Monica Vişan, Dispersive equations and nonlinear waves, Oberwolfach Seminars, vol. 45, Birkhäuser/Springer, Basel, 2014. Generalized Korteweg-de Vries, nonlinear Schrödinger, wave and Schrödinger maps. MR 3618884
- Joachim Krieger and Shuang Miao, On the stability of blowup solutions for the critical corotational wave-map problem, Duke Math. J. 169 (2020), no. 3, 435–532. MR 4065147, DOI 10.1215/00127094-2019-0053
- J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615. MR 2372807, DOI 10.1007/s00222-007-0089-3
- J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for the critical Yang-Mills problem, Adv. Math. 221 (2009), no. 5, 1445–1521. MR 2522426, DOI 10.1016/j.aim.2009.02.017
- Joachim Krieger, Wilhelm Schlag, and Daniel Tataru, Slow blow-up solutions for the $H^1(\Bbb R^3)$ critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1–53. MR 2494455, DOI 10.1215/00127094-2009-005
- Andrew Lawrie and Sung-Jin Oh, A refined threshold theorem for $(1+2)$-dimensional wave maps into surfaces, Comm. Math. Phys. 342 (2016), no. 3, 989–999. MR 3465437, DOI 10.1007/s00220-015-2513-7
- Pierre Raphaël and Igor Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122. MR 2929728, DOI 10.1007/s10240-011-0037-z
- Igor Rodnianski and Jacob Sterbenz, On the formation of singularities in the critical $\textrm {O}(3)$ $\sigma$-model, Ann. of Math. (2) 172 (2010), no. 1, 187–242. MR 2680419, DOI 10.4007/annals.2010.172.187
- Casey Rodriguez, Threshold dynamics for corotational wave maps, Anal. PDE 14 (2021), no. 7, 2123–2161. MR 4353567, DOI 10.2140/apde.2021.14.2123
- Jalal Shatah and A. Shadi Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754. MR 1278351, DOI 10.1002/cpa.3160470507
- Jacob Sterbenz and Daniel Tataru, Energy dispersed large data wave maps in $2+1$ dimensions, Comm. Math. Phys. 298 (2010), no. 1, 139–230. MR 2657817, DOI 10.1007/s00220-010-1061-4
- Jacob Sterbenz and Daniel Tataru, Regularity of wave-maps in dimension $2+1$, Comm. Math. Phys. 298 (2010), no. 1, 231–264. MR 2657818, DOI 10.1007/s00220-010-1062-3